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Goal: determine empirical error field correction

in a small number of shots

e General approach:
— Start with best estimate for error correction
— Apply an n=1 perturbation with rotating phase

— Look for modulation of plasma rotation as net error field varies

— Repeat with varying plasma conditions
(Ip, Bt, shape, ...) to build up a database
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Goal: determine empirical error field correction

in a small number of shots

e General approach:
— Start with best estimate for error correction
— Apply an n=1 perturbation with rotating phase
— Look for modulation of plasma rotation as net error field varies

— Repeat with varying plasma conditions
(Ip, Bt, shape, ...) to build up a database

 Advantages: Error

) . . Rotating correction
— Can pe applied in varying plasma n=1 field
conditions

— Can test a range of correction fields Intrinsic
in a single shot error field

— In principle, 1-2 shots yield information
to determine optimum error correction
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XP618: Optimize error field correction vs. rotation — LaHaye, Strait

kHz

30

o

F oy

g = ol )]
5 Vo
- 250A,, |/ )

- Observe rotation modulation at 2nd harmonic of applied field
- Little to no rotation modulation observed below no-wall limit
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Modulation of rotation does not appear to be

synchronous with the applied n=1 field
Shot 119629 carbon f,..:ion
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Modulation spectrum is dominated by 20 Hz

e There may be a small response at the 12 Hz applied frequency

Shot 119629 Rotation ot R=1.344
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Possible explanations for the behavior of rotation

 Modulation of rotation is strongest at high beta:
suggests that resonant field amplification plays a role

 The apparent lack of synchronization may be due to a
strong and rapidly changing phase shift of the resonant
plasma response

— Time scale for changes in beta is not too different from the
period of the perturbation

e The modulation of rotation may be caused by ELMs
(not n=1 perturbation)

— Resonant plasma response enhances the effect of the
magnetic perturbation of the ELMs
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Prospects for further tests of this concept

 The method requires a clear separation of time scales:

Flattop duration >> Period of n=1 perturbation >> ELM period
— Stationary discharge conditions are advantageous
— Rapid ELMs (or no ELMs) are desirable

 Resonant plasma response infroduces additional complications
— It may be desirable to remain well below the no-wall limit
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