

S. A. Sabbadh

Resistive Wall Mode Active Stabilization (XP615) and Plasma Rotation Damping Physics

S.A. Sabbagh¹, R. E. Bell², J.E. Menard², D.A. Gates², A.C. Sontag¹, W. Zhu¹, J.M. Bialek¹, M.G. Bell², B.P. LeBlanc², F. Levinton³, K.C. Shaing⁴, K. Tritz⁵, H. Yu³, and the NSTX Research Team

¹Department of Applied Physics, Columbia University, New York, NY ²Plasma Physics Laboratory, Princeton University, Princeton, NJ ³Nova Photonics, Inc., Princeton, NJ ⁴University of Wisconsin, Madison, WI ⁵Johns Hopkins University, Baltimore, MD

NSTX Results Review

July 26th, 2006 Princeton Plasma Physics Laboratory

<u>RWM active stabilization is a key milestone in RWM</u> stabilization physics research in NSTX

RWM active stabilization

- **□** First demonstration in high β , low aspect ratio tokamak plasmas with low plasma rotation (Sabbagh, et al., to appear in PRL, 7/28/06 (est.))
- Physics relevant to future tokamaks (ITER, KSTAR)

RWM passive stabilization

- Several years of research in NSTX (several publications)
- Although a decade of general research, no definitive conclusion regarding RWM stabilization physics
 - Plasma energy dissipation, torque balance central to RWM dynamics
 - XP619 (<u>next talk</u>) will examine energy dissipation
 - Torque balance examined in NSTX over past year (covered in this talk)

RWM Active Feedback System Installed on NSTX

- Stabilizer plates for passive stabilization at sufficient plasma rotation
- External midplane control coil closely coupled to vacuum vessel
 - Similar to ITER port plug designs
- Behavior of n > 1 RWM can be studied
 - ❑ Unstable n = 1 3 RWMs already observed in NSTX (Sabbagh, et al., NF 46 (2006) 635.)

RWM stabilized at ITER-relevant rotation for ~ 90/yRWM

- DCON computed time evolution of $\beta_N^{\text{no-wall (n=1)}}$

 - n = 2 RWM amplitude increases but mode remains stable during n = 1 stabilization
 - n = 2 internal plasma mode seen in some cases
 - Consistent with DCON
- Plasma rotation ω_{ϕ} reduced by non-resonant n = 3magnetic braking
 - Due to neoclassical toroidal viscosity
 - Rotation less than ½ of ITER predicted $\omega_{\phi}/\Omega_{crit}$ (Liu, et al., NF 45 (2005) 1131.)

Rotation reduced far below RWM critical rotation profile

Rotation typically fast and sufficient for RWM passive stabilization

□ Reached $\omega_{\phi}/\omega_{A} = 0.48|_{axis}$

- Generally, rotation profile responsible for RWM passive stabilization, not just single radial location
- Non-resonant n = 3 magnetic braking used to slow entire profile
 - The $\omega_A/\Omega_{crit} = 0.2|_{q=2}$
 - The $\omega_A / \Omega_{crit} = 0.3 |_{axis}$
 - Below ITER Advanced Scenario 4 by at least a factor of 2.

Varying relative phase shows positive/negative feedback

Active feedback on n = 1 RWM amplitude, phase

- Control current relative phase, $\Delta \phi_f$
- Phase scan shows superior settings for negative feedback
 - Pulse length increases
 - □ Internal plasma mode seen at $\Delta \phi_f = 225$, damped feedback system response

Gain scan also performed

Sufficiently high gain showed feedback loop instability

<u>Neoclassical toroidal viscosity (NTV) theory tested</u> <u>as non-resonant rotation damping mechanism</u>

- Measured rotation damping modeled is non-resonant, global in character
 - Unlike local damping due to islands
 - Outward momentum diffusion across rational surface not observed
 - Torque balance compares measured $d(I\omega_{\phi})/dt$ to sum of torques on plasma
 - Magnitude of NBI torque verified by TRANSP code
- Full Shaing NTV model compared to XP for first time
 - Valid for all collisionality regimes, no scaling factors O(1) agreement
 - Past, simplified comparisons showed theory orders of magnitude too small

See W. Zhu, S.A. Sabbagh, R.E. Bell, et al., PRL **96** (2006) 225002 for equations, detail

Braking field applied at various β_N to test NTV theory

Observed rotation damping follows NTV theory

Trapped particle effects are required for quantitative agreement

Detailed model of applied damping fields required for quantitative agreement

> 3-D Biot-Savart computation

Numerically computed using broad spectral decomposition of 3-D non-axisymmetric field

- □ (0 < n < 15)
- □ (-15 < m < 15)

Pressure-driven RFA, RWM increases non-axisymmetric field at high β_N
NTV based on applied field mode spectrum, or DCON computed mode spectrum
NSTX

Major goals in RWM research were reached in 2006

- **□** First demonstration of RWM active stabilization in high β , low A tokamak plasmas with ω_{ϕ} significantly less than Ω_{crit}
 - In the predicted range of ITER
 - Positive and negative RWM feedback demonstrated by varying feedback gain and relative phase
- Stability of n = 2 RWM demonstrated during n = 1 RWM stabilization
 - \square n = 1,2 plasma mode sometimes observed; fast β collapse, recovery
- Plasma rotation damping by non-axisymmetric applied field, RFA, or RWM follows NTV theory
 - First full NTV calculation, yielded quantitative agreement to XP
 - Key component of RWM stability physics and dynamics; general momentum transport relevance

More details in publications mentioned; analysis continues!

