

XP 619: RWM Passive Stabilization Physics in NSTX

A. Sontag¹, S. Sabbagh¹, R. Bell², B. LeBlanc²,
F. Levinton³, J. Menard², K. Tritz⁴, H. Yuh³

¹Columbia University ²PPPL ³NOVA Photonics ⁴Johns Hopkins University

2006 NSTX Results Review

July 26th, 2006 PPPL

Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** NYU ORNL **PPPL** PSI **SNL** UC Davis **UC** Irvine UCLA UCSD **U** Maryland **U New Mexico U** Rochester **U** Washington **U** Wisconsin Culham Sci Ctr Hiroshima U HIST Kyushu Tokai U Niigata U Tsukuba U **U** Tokvo **JAERI** loffe Inst TRINITI **KBSI** KAIST ENEA, Frascati CEA, Cadarache IPP, Jülich **IPP.** Garching **U** Quebec

Department of En

A.C. Sontag

XP619 explores RWM passive stability physics

• Motivation:

Resistive wall mode (RWM) passive stabilization physics still not conclusively determined

• RWM Stabilization:

- Alteration of instability drive
 - for example, p' reduction by other MHD modes
- Leading models invoke stabilization by energy dissipation related to plasma rotation (e.g. by resistivity, viscosity)
 - defines a critical plasma rotation (Ω_{crit}) for RWM stability

• Experiment:

scan parameters which are predicted to affect dissipation

A.C. Sontag

observe effects on critical rotation

Examine several models used to predict RWM stability

Stability Theory	Relevant Physics	Key Scalings
cylindrical tearing mode (Fitzpatrick)	rotation bifurcation mode interacting w/error field	bifurcation when: $\omega = \omega_0/2$
resistive layer (Finn/Gimblett-Hastie)	resistive layer dissipation + JxB torque on island	$\left(\gamma\tau_L\right)^{5/4} = \frac{1 - \delta\gamma\tau_w}{-\varepsilon + \gamma\tau_w}$
"simple" RWM model (Fitzpatrick)	empirical perpendicular fluid viscosity	high v _* limit: $\Omega_{crit} = \frac{1 - md}{2v_*}$
semi-kinetic (Bondeson-Chu)	Alfven continuum coupling / ion Landau damping	stabilizing inertial enhancement: $\omega > \omega_A / 4q^2$
sound wave (Hammet-Perkins)	sound wave coupling / ion Landau damping	$F_{SD} = -\kappa_{\parallel} \sqrt{\pi} \left k_{\parallel} v_{th}^{i} \right \rho v_{\parallel}$
neoclassical effects (Shaing)	neoclassical perpendicular fluid viscosity	$T_{\muot} \propto arepsilon^{1/2} {oldsymbol{ u}}_{ii}$
NTV (Shaing)	fluid-field viscosity	$T_{_{NTV}} \propto rac{p_i}{v^i_{_{th}}} rac{\omega}{v_{_{ii}}}$
• experimentally varied $\omega_A \& v_{ii}$ to examine alteration of Ω_{crit}		

Fast rotating plasma mode growth halts RWM growth

End of core n=1 plasma mode leads to RWM growth

NSTX data inconsistent with Fitzpatrick mode locking model

- Model based on tearing mode interaction with error field
- Rotation bifurcation when rotation slowed to 1/2 steady-state value
- Data at q = 2 shows plasma stable at much lower rotation
- Data closer to core shows no correlation

A.C. Sontag

Increased ion collisionality leads to lower Ω_{crit}

(km/s)

- Comparison of two constant-q discharges with varying collisionality
 - Similar v_A across plasma cross-section
- Other shot pairs with similar v_A give similar result
- Continued analysis to determine profile dependence of dissipation
 - NTV torque strongest near R = 130 cm
 - other models have different spatial distribution of dissipation

A.C.Sontag 🛏

 Ω_{crit} may have weak v_A dependence

- V_A scan at constant q performed
 - no clear scaling of Ω_{crit} with v_A
- Variations in v_{ii} complicate analysis
- Profile effects can help determine dissipation physics
 - Compare localization of dissipation, plasma parameter dependence to experiment
 - MARS-F analysis to fully test dissipation profile for semikinetic and sound wave models

XP 619 data provides path to understanding RWM passive stabilization

- Faster rotating MHD shown to affect RWM stability
 - appears to alter unstable mode drive
- Fitzpatrick tearing mode model inadequate to describe NSTX RWM critical rotation
 - **D** NSTX stable to much lower rotation than $\omega_0/2$ prediction
- Apparent dependence of Ω_{crit} on v_{ii} observed
 - NTV and other calculations will determine profile effects
- Initial indication is weak variation of $\Omega_{\rm crit}$ with v_A but analysis is ongoing
 - MARS calculations will test semi-kinetic and sound wave models
 - \Box v_{ii} dependence must be included to isolate any v_A effects

A.C. Sontag =