# Current multiplication and flux amplification in NSTX-CHI XP

### Xianzhu Tang

Los Alamos National Laboratory

In collaboration with

Allen Boozer

**Columbia University** 

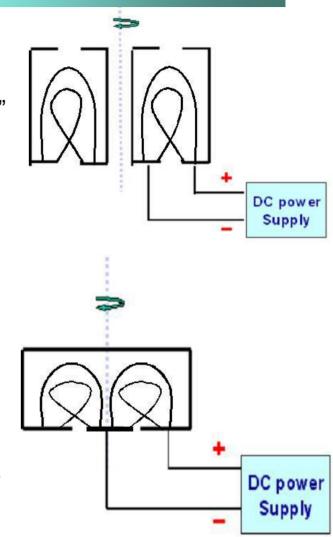
Work supported by DOE OFES





### **Definitions**

- Flux and current in three regions:
  - Closed flux: "c"
  - Open flux: SOL "os" and diverter private "op" fluxes
- Current multiplication factor (CM)
  - Ratio of toroidal plasma current vs. injector current  $I_{e}^{c} + I_{e}^{o}$


$$\mathcal{M}_C \equiv \frac{I_p^c + I_p^o}{I_{inj}}.$$

- Flux amplification factor (FA)
  - Ratio of closed poloidal flux vs. injector flux

$$\mathcal{A}_F \equiv \frac{\chi^c}{\chi^o}.$$

- Why they are important?
  - High CM good for electrode power handling.
  - High FA implies improved engineering efficiency.







### **CM independent of FA in Taylor relaxed ST-CHI**

Taylor state is a limit of force-free plasma.

 $\mathbf{j} = k(\chi) \mathbf{B},$ 

ST-CHI: CM is independent of FA

$$I_{inj} = k_0 \chi^o; \ I_p^c = k_0 \psi^c; \ I_p^o = k_0 \psi^o.$$

• Equal to initial vacuum toroidal/injector poloidal flux ratio

$$\mathcal{M}_C = M \equiv \frac{\Psi_0}{\chi_{inj}}.$$

Spheromak or ST-PCC: CM is tied to FA

$$\mathcal{M}_C = \alpha (1 + \mathcal{A}_F).$$





# CM negatively correlated with FA in partially relaxed ST-CHI

- Consider the two-scale model:  $(k^o, k^c)$ 
  - Sustained CHI discharge has

$$k^o > k^c$$

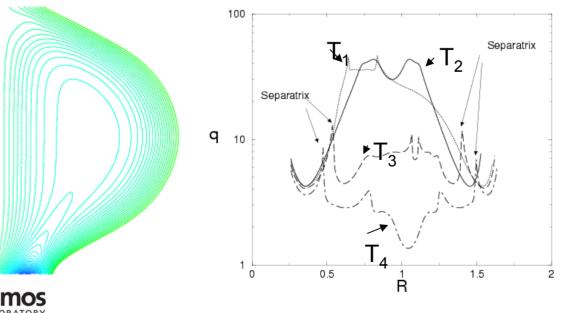
• CM bounded from above by M.

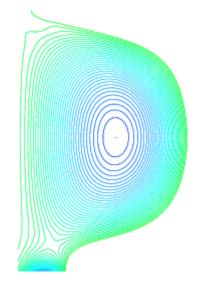
$$\mathcal{M}_C < M \equiv \frac{\Psi_0}{\chi_{inj}}.$$

Convoluted dependence (RHS)

$$M - \mathcal{M}_C = \left(1 - \frac{k^c}{k^o}\right) \mathcal{A}_F \frac{\psi^c}{\chi^c}$$

- First term: deviation from Taylor state, limits maximum FA;
- Second term: almost independent variable, but bounded from M by an amount determined by the first term.
- Third term: average q, mostly geometry, but also affected by the first two terms through the current on open flux.




# **NSTX Transient CHI for Startup**

- Fast Transient (FT-) CHI:
  - Pinch-off of an axisymmetric plasmoid.
    - High CM, but limited FA.
    - Exp: no helical mode present during pinch-off.

- Relaxed Transient (RT-) CHI:
  - Axisymmetric pinch-off of a 3D relaxed CHI plasma.
    - Relaxation  $\rightarrow$  high FA target
    - Pinch-off  $\rightarrow$  2D reconnection and decay of helical modes  $\rightarrow$ high FA and CM ST target.







# **Experimental implications on forming an ST**

### • FT-CHI:

- No FA, so initial injector poloidal flux must be large.
- High CM only achieved with high vacuum toroidal flux.
  - Problematic proposition with current TF system.
- TF coil current swings down post-pinch-off.
- RT-CHI:
  - High CM achieved by reducing injector flux while holding vacuum toroidal flux fixed (good!).
  - High FA to compensate for the small injector flux (good!).
  - Most promising with current NSTX TF and PF coil systems.





### **Summary**

- Current multiplication factor is independent of flux amplification in Taylor relaxed ST-CHI plasmas.
- Current multiplication factor is negatively correlated with flux amplification in a more realistic partially relaxed ST-CHI plasmas.
- Very different from spheromak and ST-PCC.
- To form an ST plasma, transient CHI insures closed flux surfaces, while
  - FT-CHI needs high field PF coils to provide adequate poloidal flux, and high field TF coils to reach high CM.
  - RT-CHI only needs conventional TF coils, weak field PF coils enables high CM, and FA by relaxation provide the ST poloidal flux.



