XP 612 DEPENDENCE OF PERTURBED ELECTRON TRANSPORT ON HEAT FLUX AND Q-PROFILE IN NSTX

D. Stutman, K. Tritz, L. Delgado, M. Finkenthal JHU

M. Bell, R. Bell, S. Kaye, H. Kugel, B. LeBlanc, L. Roquemore PPPL

C. Bush, R. Maingi

ORNL

V. Soukhanovskii

LLNL

Motivation: assess critical gradient behavior in NSTX

- Expect faster cold pulse propagation at higher heating power
- Expect q-profile/magnetic shear dependence (L-mode observations)
- Compare perturbed electron and particle transport
- 1 ¹⁄₂ run days

- Preheat to 'freeze-in' q-profile -> change P_b , ∇T_e -> perturb with pellet
- Vary 'frozen-in' q-profile by changing preheat power
- High triangularity, small-ELM, 1 MA, DND H-mode as baseline

P_b change at fixed q

Fast T_e from tangential OSXR + poloidal USXR

- SXR T_e in approximate agreement with MPTS (post run calibration ongoing)
- High-resolution SXR array needed for pedestal (see talk by K. Tritz)

Modeling shows cold pulse changes with P_b

- Central perturbation at high P_b
- No central perturbation at low P_b; ITB ?
- Plasma collapse after few tens of ms

Unusual CHERS profiles after P_b drop

Equilibrium transport also changes with P_b

• Heat flux change may have profound effects on NSTX H-mode

q-profile change at fixed P_b

Cold pulse evolution changes also with q

 Fast, deep penetrating perturbation

 Slower perturbation, cold pulse 'polarity reversal'

Particle transport much slower than the electron one

- Neon penetrates on tens of ms time scale
- Pellet injected C does not decay for $\approx 100 \text{ ms}$
- T_e sensitive signal crashes on few ms time scale

- Pre-heat technique for varying P_b at fixed-q and q at fixed P_b works
- T_e from multi-color SXR matches MPTS, but pedestal OSXR array needed
- Cold pulse changes with P_b and q, supporting 'critical gradient' picture
- Perturbed electron transport much faster than the particle one; magnetic effects ?
- Unusual profiles and transport (ITBs ?) when P_b changes after pre-heat
- Global confinement nevertheless constant (χ_{eff} always $1m^2$ /s' axiom)
- NSTX challenges tokamak transport physics; larger T&T effort needed

CHERS profiles before P_b change

