

<u>Observation of the Enhanced Scattered High-k</u> <u>Spectra during H-mode Phase on NSTX</u>

<u>Hyeon K. Park</u> PPPL, Princeton University Princeton, NJ

> NSTX Review on July 26-27, 2006

Collaborators;

D. R. Smith, E. Mazzucato, C. W. Domier, N. C. Luhmann, Jr., R. Maingi, M. Bell, R. Bell, S. Kaye, and B. Leblanc

Examples of Previous and Existing Scattering Systems

Microwave scattering

- Mazzucato, Phys. Fluids 21,1063 (1978)

Laser scattering

Slusher & Surko, Phys. Fluids 23, 472 (1980)

FIR scattering

- Park et al., RSI 53, 1535 (1982)

High-k scattering systems

- Hennequin et al., PPCF 46, B121 (2004)
- Rhodes et al., IAEA (2004)

NSTX is a low-field machine \rightarrow up to $k_{\perp}\rho_{e}{\sim}0.7$

Simultaneous, multi-channel measurements \rightarrow k-space turbulence continuum

Hennequin, 2004

Steerable Optics Enable Good Radial Coverage

Enhanced Localization in NSTX

Ohmic Discharge (He)

- Plasma parameters
 - $n_e(0) \sim 2.5 \times 10^{13} \text{ cm}^{-3}$
 - T_e (0) ~ 200eV
- Spatial coverage
 - − r/a ~0.7
 - Wavenumber ~ 4 cm⁻¹
 20 cm⁻¹
- Monotonically decreasing power spectra as a function of wavenumbers
 - Resembles previous measurements in many devices

Spectral Analysis of OH Discharge

- Plasma parameters
 - $n_e (0) \sim 2.5 \times 10^{13} \text{ cm}^{-3}$ and $T_e (0) \sim 200 \text{ eV}$
- Spatial coverage
 - r/a ~0.85 and wavenumber range of ~4 cm⁻¹ 20 cm⁻¹
- Symmetric frequency spectra at high k and asymmetric frequency spectra at low k
 - Outward flow at the low k is dominant.
 - Energy transport at the low k (ITG)?

6

L/H-Mode Discharge

Plasma parameters

- $n_e (0) \sim 6 \times 10^{13} \text{ cm}^{-3}$
- $T_{e}(0) \sim 1000 eV$
- Spatial coverage
 - − r/a ~0.95
 - Wavenumber ~ 6 cm⁻¹ - 27 cm⁻¹
- Monotonically decreasing power spectra during L-mode phase
- Reduction in amplitude at the medium wavenumbers during Hmode phase: mainly due to refraction effect

H-Mode Transition

Plasma parameters

- n_e (0) ~ 6 x 10¹³ cm⁻³
- T_e (0) ~ 1000eV
- Spatial coverage
 - r/a ~0.95 and wavenumber range of ~ 6 cm⁻¹ – 29 cm⁻¹
- Symmetric frequency spectra during L-mode phase

Ray tracing of L/H-Mode Discharge

Plasma parameters

- $n_{e}(0) \sim 6 \times 10^{13} \text{ cm}^{-3}$
- T_e (0) ~ 1000eV
- Spatial coverage
 - − r/a ~ 0.8 0.95
 - Wavenumber ~ 6 cm⁻¹ 29 cm⁻¹
- In H-mode with steep density gradient, probe beam refract outwards and scattered beam refracts inward – increasing scattering angle
- Reduction in amplitude at the medium wave-number is largely due to refraction and increase of high-k spectra is pronounced

Preliminary results of XP 629

- Plasma parameters
 - $n_e(0) \sim 2.5 \times 10^{13} \text{cm}^{-3}$ - $T_e(0) \sim 200 \text{eV}$
- Spatial coverage R=142 cm)
 - r/a ~0.9 − 0.95
 - Wave-number coverage
 ~ 4 cm⁻¹ 29 cm⁻¹
- Reproduced the initial experimental results
 - More burst type of increased signal at high wave-numbers.
 - Only present during Hmode phase.

Time (sec)

Preliminary results of XP 629

- Plasma parameters
 - $n_e (0) \sim 6 \times 10^{13} \text{cm}^{-3}$ - $T_e (0) \sim 1.0 \text{ keV}$
- Spatial coverage (R=137 cm)
 - r/a ~0.8 − 0.85
 - Wave-number coverage
 ~ 4 cm⁻¹ 25 cm⁻¹
- Double H-mode phase
 - Clear correlation between the increased power spectra at high k and H-mode phase.

Characteristics of the Power Spectra

Time history of frequency spectra of the highest k_r channel ($k_r = 27 \text{ cm}^{-1}$ for Hmode phase and $k_r = 20 \text{ cm}^{-1}$ for L-mode phase)

