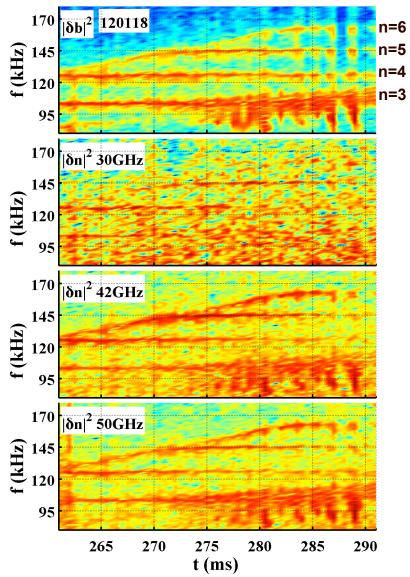

Investigation of fast ion mode spatial structure in NSTX

0 NSTX

N.A. Crocker, S. Kubota, W.A. Peebles (UCLA);
E.D. Fredrickson, N.N. Gorelenkov, G.J. Kramer, H. Park (PPPL); W.W. Heidbrink (UCI);
K.C. Lee, C.W. Domier, N.C. Luhmann Jr (UCD) NSTX Results Forum, July 2006

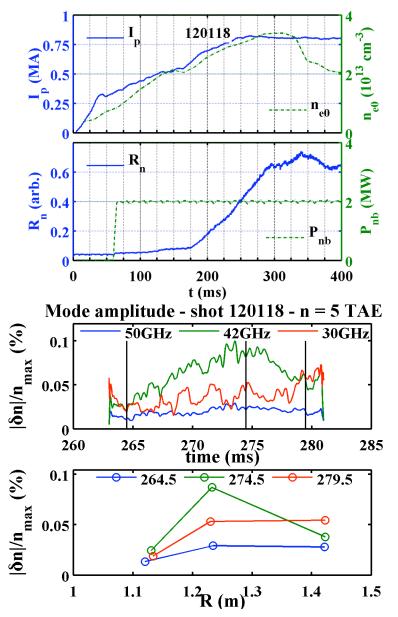

Internal density fluctuation diagnostics allow coherent modes to be probed in NSTX

- Reflectometry measures local density perturbation and "plasma displacement" (if motion incompressible)
 - interpretation of reflectometry signal for coherent modes confirmed by comparison with BES data on DIII-D.
- Multiple reflectometers \Rightarrow radial structure of mode
 - test theory predictions
 - infer magnetic fluctuation amplitude (affects fast ion transport)
- Radial 1mm & tangential FIR interferometer data available
 - provide a survey of mode activity across entire plasma diameter
 - allows detection of modes localized on high field side
 - provide additional constraints on spatial structure
- Plans to upgrade 1mm interferometer to multi-channel radially viewing polarimeter
 - allows measure of magnetic fluctuations

TAE spatial structure investigated — Interesting questions still to be answered

• TAEs measurements available from:

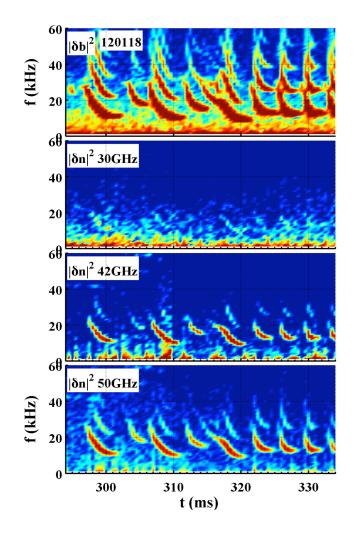
- external toroidal Mirnov array (top right)
- three fixed-frequency reflectometers (bottom right)
- radial chord 1mm interferometer (not shown)
- TAEs exhibit many behaviors (bursting, persistence, slow or rapid chirping) ⇒ what is revealed about fast ions & plasma?
 - example: TAEs in 120118 (right) slow frequency upsweep followed by stable frequency, successive upsweeps appear connected
- Future work with this data set:
 - compare with NOVA-K
 - understand effect on fast ions compare with fast ions population measurements (NPA, SSNPA, sFLIP, neutrons ...)
 - learn to exploit diagnostic capabilities of TAEs (i.e. what is revealed by TAE behavior?)

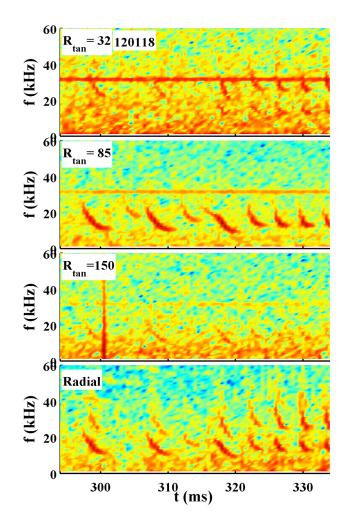

Initial results: structure of TAEs in shot 120118 evolve significantly over lifetime

Typical TAE investigated

- frequency sweeps up from $f \sim 120$ to 145 kHz during $t \sim 263 t \sim 271$ ms
- frequency stable after upsweep at least until t ~ 281 ms.
- n = 5 (from external Mirnov array)
- Density fluctuation at R ~ 121 cm (42GHz, n_c ~ 2 × 10¹² cm⁻³) varies significantly over ~ 20 ms; possible causes:
 - radial mode structure evolves significantly (e.g. mode peak shifts radially)
 - mode amplitude evolves

• Question: what causes mode evolution?


- variation too rapid to be caused by equilibrium change? $\Delta f/f \sim 15\%$, $\Delta |\delta n|/|\delta n| \sim 300\%$ over 10 ms
- controlled by evolution of fast ion population? must compare with fast ion diagnostics
- is "connection" of upsweeps (previous slide) coincidental?


EPM spatial structure to be investigated

• EPM measurements available from:

- external toroidal Mirnov array (top left)
- three fixed-frequency reflectometers (bottom 3 left)

- radial chord 1mm interferometer (bottom right) and tangential FIR interferometers (top 3 right)
- complementary data available from USXR chord arrays (not shown)

Future work: further investigation of three-wave interactions of EPMs, TAEs and CAEs/GAEs

TAEs and EPMs

- CAE (GAE?) spectrum broadens thru sideband generation during fast ion loss events (drops in neutron rate)
- broadening appears to result from three-wave coupling
- bicoherence measurements indicate three-wave coupling occurs

shot 113546

200

freq (kHz) 100

200

50

350

355

360

365

370

0.8

0.6

0.4

0.2

900[']

• Bicoherence of "x" defined here as B(f1,f2) = $|\langle x(f_1)x(f_2)x^*(f_1+f_2)\rangle|/(\langle |x(f_1)x(f_2)|^2\rangle\langle |x(f_1+f_2)|^2\rangle)^{1/2}$

Bicoherence of δb

 $B(f_1, f_2)$

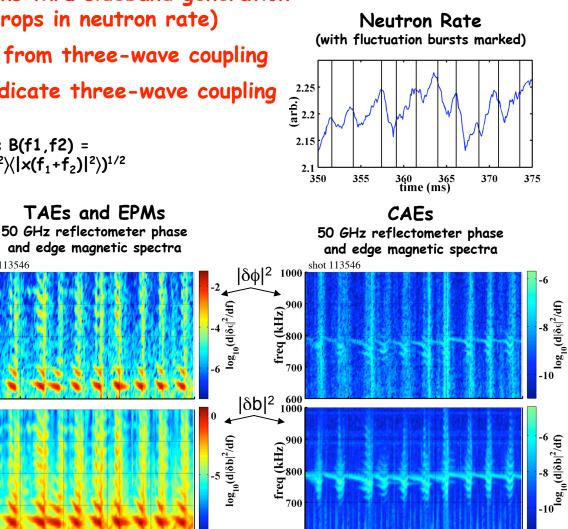
800

freq2 (kHz)

850

200

150


freq1 (kHz) 001

50

0

700

750

600

350

355

360

time (ms)

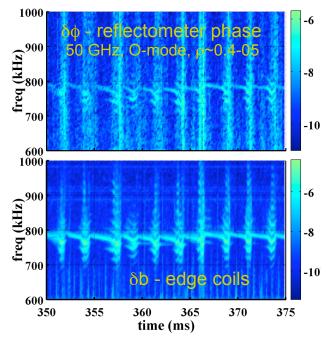
365

370

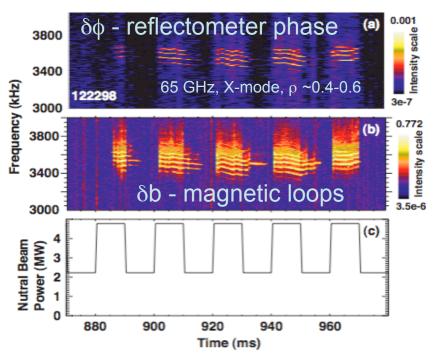
375

·10

375


On-going work: continue cross-machine studies of fast ion driven modes

• Cross-machine studies of fast ion driven modes is an on-going effort


For example:

- TAEs: W.W. Heidbrink, et al., Plasma Phys. Control. Fusion vol. 45 (2003) pg. 983
- CAEs: N.N. Gorelenkov, et al., 9th IAEA TCM on Energetic Particles in Magnetic Confinement Systems, November 9 - 11, 2005, Takayama, Japan

CAE measurements on DIII-D

 UCLA Team uses reflectometry to study fast ion driven modes in DIII-D and NSTX ⇒ can contribute to cross-machine studies

Summary

- Investigation of fast ion mode structure motivated by effect of modes on fast ion transport
- Array of diagnostics to investigate fast ion modes:
 - **Density fluctuations**
 - three fixed-frequency reflectometers (EPMs, TAEs and CAEs/GAEs)
 - radial chord 1mm interferometer (EPMs and TAEs)
 - tangential chord FIR interferometer arrays (EPMs. TAEs and CAEs/GAEs?) <u>Other fluctuations</u>
 - external toroidal Mirnov array (EPMs, TAEs and CAEs/GAEs)
 - USXR chord array (EPMs)
- Initial results of TAE structure investigation available
 - structure measurements to be compared to NOVA-K in near future.
 - results show moderately rapid structure evolution \Rightarrow What controls evolution equilibrium or fast ion population?
- Extensive simultaneous measurements of EPM density fluctuation exist. To be analyzed in near future.
- On-going and future work includes:
 - further investigation of three-wave interactions of EPMs, TAEs and CAEs/GAEs
 - cross-machine study of fast ion modes