Recent Chirping Analysis

• 2004 Experiment

• "Effect of ion cyclotron acceleration on rapidly chirping beam-driven instabilities in NSTX" in press in *Plasma Phys. Cont. Fusion*.

•CQL3D calculation of fastion acceleration by Bob Harvey.

•Quantitative comparison with Berk-Breizman model by Herb Berk.

Plasma Conditions for 2004 Experiment: Early TAES and Late Fishbones

Possible effect on MHz-band chirping

NSTX Results Review 7/26/06

HHFW has no effect on Fishbones

HHFW has no effect on TAE-band chirping

HHFW alters steady-frequency TAEs

•Change occurs in ~ 5 ms

Rise in Neutron Rate → HHFW Accelerated Fast Ions

COL3D Predicts Fast-ion Acceleration throughout Phase Space

•Expected for large normalized gyroradius and many resonances

• Simulation predicts neutrons increase x2.5 (experiment = 2.0)

- Substantial tail above injection energy (observed by NPA)
- Tail largest in core but apparent at all radii
- •f decreases below injection energy (NPA not apparent)
- Large trapped tail
- Big reduction in co

CQL3D Simulation Guides Interpretation of the Results

HHFW accelerates trapped fast ions at all radii -> can alter
CAE chirping

 Large trapped tail → The number of trapped fast ions inside q=1 increases slightly, so fishbone stability should not be affected.

•f decreases below injection energy (particularly for co population) \rightarrow decrease in co-circulating fast ions with v ~ v_A explains TAE stabilization

Power distributed throughout phase space → Lack of effect on TAEs and fishbones not inconsistent with Berk-Breizman theory ("used a blunderbuss rather than a scalpel")