HHFW Power Balance vs B and Antenna k_{II} at Constant q

- J. Hosea, R. Bell, S. Bernabei, L. Delgado-Aparicio, B. LeBlanc, C.K. Phillips, P. Ryan, S. Sabbagh, K. Tritz, J. Wilgen, J.R. Wilson, et al.
- Goal: Measure RF power loss properties as a function of magnetic field at constant q to elucidate:
 - RF power loss scaling with B under similar stability conditions
 - PDI ion heating loss vs B
 - Fast wave propagation characteristic effects on surface wave propagation and damping
- Higher field should give higher efficiency of heating
 - PDI instability should be weaker at higher field
 - Onset density for propagation of HHFW is approximately proportional to B at a given $k_{||}$ waves are propagating farther from plasma edge at higher B
 - V Alfven scales with B radial group velocity should increase with B so that wave propagation into core (away from surface) is faster - surface fields should decrease with B
 - May explain higher efficiency on DIII-D
- Results from this experiment are important
 - Will help in making projections to the higher field regime of the ST CTF
 - Will provide support for increasing the k_{||} of the NSTX antenna for current drive phasing
 XP617 W-P ET

PDI Losses Are Evident at Both k_{II} Values

- Significant RF Power is Required to Sustain the Large Temperature Difference Between the Edge Ions and Electrons

• Edge ion heating via parametric decay waves accounts for a substantial amount of RF power loss which increases somewhat with wavelength - 16%/23% loss for 14 m⁻¹/-7 m⁻¹

Propagating k_{\perp} vs density and k_{\parallel} with B = 4.5kG

- Propagation is very close to wall at 7m⁻¹ and on the wall at 3m⁻¹
- Losses in surface should be higher for lower k_{II}

This proposal is to study heating efficiency/power loss over the widest magnetic field range possible

- 3 kG @ 400 kA and 5.5 kG @ 730 kA
- Constant q is desired to control stability
- Propagation onset density decreases a factor of two at the lower field for both 7m⁻¹ and 14m⁻¹
- Surface losses should increase substantially at the lower field even at 14m⁻¹
- Perpendicular group velocity also decreases by a factor of ~ 2 surface fields should be enhanced further increasing edge losses
- PDI losses can be expected to increase substantially at the lower field

Comparison of Thomson scattering measurements vs k_{\parallel} at 5.5 kG and 3.0 kG

• $\Delta T_e(0)$ is much larger at B_{ϕ} = 5.5 kG for $k_{||}$ = 7 m⁻¹, τ_{Teo} is also longer

- Heating at -3 m⁻¹ is still small at 5.5 kG
- Vertical instability seriously affects the results at 3 kG for time > about 0.23 sec

Comparison of Thomson scattering measurements vs k_{\parallel} at 3.0 kG and 3.5 kG

• $\Delta T_e(0)$ is significantly larger at $B_{\phi} = 3.5$ kG for $k_{\parallel} = 14$ m⁻¹

• Instability still seriously affects the results at 3.5 kG for time > about 0.25 sec

RF Probe Signals are a strong function of k_{II}

- $B_{\theta RF}$ at Bay J midplane increases by a factor of ~ 3 for a decrease in k_{II} from 14m⁻¹ to -3m⁻¹
- This could give rise to around an order of magnitude increase in structure/sheath losses
- Fluctuation level at high power appears to be large

Good Heating Observed for $k_{||} = -7m^{-1}$ at $B_{\phi} = 5.5 \text{ kG}$ -- $T_{eo} > 3.6 \text{ keV}$ for $P_{RF} = 2 \text{ MW}$

- T_{iHOT} and T_{i1G} evolve somewhat during pulse
 but do not see core collapse
- $B_{\theta RF}$ also evolves smoothly (0.012 0.016)
- Fast time behavior of $\rm T_e(0)$ is indicated by fast OSXR diagnostic
- MHD is observed at the core temperature collapse

Expected Results

- Heating efficiencies vs B for 14 m⁻¹, -7 m⁻¹ (co CD) and 7 m⁻¹ (π phasing)
 - Core heating from EFIT W
 - Core electron heating from Thomson scattering
- Edge heating/power loss
 - Edge ion heating from edge rotation diagnostic
 - Edge electron heating from Thomson scattering
- Behavior of PDI characteristics and induced losses with field
- Plasma profiles, core and edge, for permitting predictions of wave propagation and damping characteristics and of PDI produced losses
- Relative surface wave amplitude for comparison to surface power loss for the explored conditions
- Ceramic gap RF emission for the explored conditions

Planned Analysis

- Calculation of τ and ΔW for EFIT W to obtain percent P_{RF} deposited
- Calculation of τ_e and ΔW_e for Thomson scattering W_e to obtain P_{RF} delivered to electrons
- Compare efficiencies for the two field cases
- Analysis of wave propagation and damping characteristics from onset density into the core of plasma - along field and perpendicular directions of the ray path, and including collisions - for predicting surface losses
- Development of predictions for PDI losses
- Projection of heating efficiency expected at 10 kG, with and without PDI present, to compare with DIII-D results and for higher field ST devices

Preliminary Conclusions

- HHFW heating decreases with decreasing k_{\parallel} and improves with B
- PDI edge heating is a relatively weak function of B except for 14 m⁻¹
- Edge RF B field is strongly dependent on $k_{||}$ suggesting surface waves could contribute significantly to RF power losses
- In future, we need to determine RF B toroidally and poloidally as function of B and look at FFT spectra to evaluate edge turbulence
- We should increase current drive $k_{||}$ to improve CD efficiency
- Also, preliminary analysis suggests that increasing the frequency would greatly reduce the PDI heating