

Status of the Investigation of Fast-ion Redistribution or Loss due to MHD Modes and Alfvén Instabilities in NSTX

S. S. Medley, D. S. Darrow, E. D. Fredrickson, J. Menard and the NSTX Team

Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 USA

NSTX Results/Theory Review

PPPL July 26 - 28, 2006

Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** NYU ORNL PPPL PSI **SNL** UC Davis **UC** Irvine UCLA UCSD U Maryland **U New Mexico U** Rochester **U** Washington **U Wisconsin** Culham Sci Ctr Hiroshima U HIST Kyushu Tokai U Niigata U Tsukuba U U Tokyo JAERI **loffe Inst** TRINITI KBSI KAIST ENEA, Frascati CEA, Cadarache **IPP**, Jülich **IPP**, Garching U Quebec

almost entirely on volume-integrated neutron yield measurements.

- Mirnov, USXR, FireTip...characterize MHD activity (mode, amplitude, localization)
- S_n(t)...volume-averaged neutron rate
- S_{npa}(E, t, R_{tan})...line-integrated charge exchange neutral efflux
 - Both the volume-averaged $S_n(t)$ and line-averaged $S_{npa}(E, t, R_{ta})$ show MHD-induced fast ion depletion, but cannot distinguish between redistribution and loss effects.
- sFLIP Imaging (Darrow)...identifies energetic ion loss to the outer wall
- MSE (Levinton) + LRDFIT (Menard)...identifies redistribution because outward displacement of the core-peaked energetic beam ions modifies the beam-driven current profile and hence the core q-profile [1]
- [1] "Observation of Instability-induced Current Redistribution in a Spherical Torus Experiment," J. E. Menard, *et al.* PPPL-4160 (May, 2006). Submitted to PRL

• D. Darrow is preparing an sFLIP image overlay to quantify gyroradius centroid (energy) and pitch angle of the energetic ion loss.

NPA Measurements are Localized in Pitch and Space by Beam Injected Neutrals

• Dominance of charge exchange emissivity by beam neutrals results in both field pitch and spatial localization of NPA measurements.

- Data mining for fast ion loss effects is complete for 2005 and in progress for 2006.
- MSE/LRDFIT and sFLIP are being utilized to distinguish between energetic ion redistribution and loss effects, respectively.
- Both CX emissivity and MHD instability effects contribute to depletion of the S_{npa}.
- Volume averaging of NB halo neutrals in TRANSP compromises analysis to separate the CX emissivity and MHD instability effects.
- R. Akers is applying the LOCUST code (that has proper halo neutral modeling) to quantify the effect of halo neutrals on S_{npa} amplitude and time evolution.
- If halo neutrals affect the evolution of S_{npa}, progress in the investigation reported here will be severely impacted: options are to upgrade TRANSP or import LOCUST, both requiring ~ 0.5-1.0 MY of manpower.

Backup

The Neutral Particle Analyzer (NPA) on NSTX Scans Horizontally Over a Wide Range of Tangency Angles on a Shot-to-Shot Basis

• Covers Thermal (0.1 - 20 keV) and Energetic Ion (≤ 150 keV) Ranges

Depletion of the NPA Energetic Ion Spectra Exhibits a Spatial Dependence

