DEGAS 2 Simulations of NSTX Gas Puff Imaging Experiments

D. P. Stotler, D. P. Lundberg, B. LeBlanc, S. J. Zweben, R. J. Maqueda¹

Princeton Plasma Physics Laboratory Princeton University Princeton NJ 08543

¹Nova Photonics, Los Alamos, NM *NSTX Results Review 2008 August 6, 2008*

Radial Width & Location of Simulated Emission Clouds Match Experiment to Within Estimated Error

- For details, see: J. Nucl. Mater. 363-365, 686 (2007).
- Conclude:
 - Analysis of time-dependence \Rightarrow conventional, single-state atomic physics model for He valid.
 - DEGAS 2 can compute n_0 accurately
 - \Rightarrow use in unfolding 2-D vs. time n_e , T_e from GPI.
- Or use in synthetic diagnostic: Lodestar SOLT code,
 - Simulated 2-D turbulent, n_e , T_e + DEGAS 2 atomic physics tables \Rightarrow emission rate per atom,
 - Radially varying neutral density profile: combine experimental median camera image / emission rate & DEGAS 2 n_0 .
- All this with He puff, but most GPI data are for D₂.
 - More complex because get D_{α} photons from excited dissociation products.
 - And dissociation determines initial atom energy distribution.

Repeat DEGAS 2 Simulations with D₂ Puff

• Molecular contribution is 20 - 30%,

• Shape not very different from that due to atoms only,

 Cloud is wider than with He, - Atoms from
dissociation penetrate further.

Construct Fits to Simulated D Density

(NSTX

 \bullet Simulated 7 n_e, T_e profiles with DEGAS 2,

- Some ad hoc to enlarge parameter space.

- Fit radial profile of D density,
 - Function of local n_e, T_e
 - \rightarrow can apply to arbitary GPI data,
 - Or use in SOLT synthetic GPI

diagnostic.