Simulations of NSTX with a Liquid Lithium Divertor Module*

D. P. Stotler, R. Maingi¹, H. W. Kugel, A. Yu. Pigarov², T. D. Rognlien³, and V. A. Soukhanovskii³

> Princeton Plasma Physics Laboratory Princeton University Princeton NJ 08543

¹Oak Ridge National Laboratory, Oak Ridge, TN ²University of California at San Diego, San Diego, CA ³Lawrence Livermore National Laboratory, Livermore, CA *NSTX Results Review 2008 August 6, 2008*

*This work supported by US DOE contracts/grants DE-AC02-76CH03073, DE-AC05-00OR22725, DE-FG02-04ER54739, and W-7405-ENG-48.

Calibrate UEDGE Input Parameters Using NSTX Data

 $\bigcirc NSTX$

- Simulate shot 128339 @ 0.35 s.
- Solve equations for n_i , T_e , T_i , u_{\parallel} ,
 - Set core b.c. using Thomson scattering: $n_e = 4.3 \times 10^{19} \text{ m}^{-3}$, and $T_e = 130 \text{ eV}$.
 - Classical transport along field lines & anomalous across flux surfaces.
 - Adjust $D(\psi)$, $\chi_e(\psi)$, $v(\psi)$ to match midplane profiles.
- And to match power flowing in from core: $P_{in} = 1.7 1.8$ MW.
- Particle input:
 - Lump external fueling into core particle source,
 - Require magnitude consistent with center stack gas puff (400 A) + NBI (18 A).

Use Midplane Profiles to Set Transport Coefficients

- D(ψ) = 0.04 (core) \rightarrow 0.1 (wall) m²/s,
- $v(\psi) = 0 \rightarrow 30$ m/s,
- $\chi(\psi) = 1.5 \rightarrow 35 \text{ m}^2/\text{s}.$

- Core power: P_e = 0.98, P_i = 0.82, = 1.8 MW total,
- D+ current from core: 440 A; D current to core: 142 A.

Divertor Profiles Reasonable with Nominal Pumping

NSTX

• Improving D_{α} agreement requires much more complex approach.

Simulate Effect of LLD as Reduction in Recycling

- Theoretical lower limit = 0.1 0.3,
 - Actual values higher due to variations in coatings & surface contamination.
 - Don't know *a priori* \Rightarrow do scan.
- First change $\psi_n = 0.85$ boundary condition from specified n & T to specified particle flux & power,
 - Fix these & transport model as recycling varied.
- Introduce LLD as reduction in $\mathcal{R} \equiv \mathcal{R}_{od} = \mathcal{A}_{od}$,

– Lower limit: $\mathcal{R} = 0.65$ set by ability of UEDGE to converge.

Scan of Recycling Coefficients will Feed into Future Work

NSTX

- Will compare core density with 0-D particle balance calculations.
- Peak divertor n_e & T_e impact lithium transport.
- Total current drops 40 x,
 - Compare with 3 x drop in D_{α} in CDX-U \Rightarrow Difficult to approach theoretical minimum recycling in practice.

Li Temperature Limit Could Be Reached at Maximum Input Power

NSTX

- Simple calculation for illustrative purposes,
 - Should instead feed heat flux data into Zakharov's 3-D calculations.
- ΔT from 200 °C shown for \mathcal{R} = 0.65 case.
- Consider LLD thermal properties to be like pure Cu or Li
- Present 2 s discharges OK for 1.8 MW Li.
- But, pulse length restricted at 7
 - Especially if Li coating thick.

- Simulation of existing & recycling scan will be used to check 0-D particle balance calculations,
 - Were utilized in selecting LLD radius & width.
- Use UEDGE profiles & thermal analysis to compute reflection, sputtering, evaporation of lithium,
 - Surface models based on coupled REDEP/WBC, TRIM-SP, & MD simulations.
- Self-consistent erosion / redeposition simulation
 ⇒ net flow of Li away from surface,
 - Feed flux back to UEDGE \Rightarrow Li distribution in core & SOL.