

XP802: Active RWM stabilization system optimization and ITER support

College W&M **Colorado Sch Mines** Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics New York U Old Dominion U ORNL **PPPL** PSI Princeton U SNL Think Tank. Inc. UC Davis UC Irvine UCLA UCSD **U** Colorado **U** Maryland **U** Rochester **U** Washington **U Wisconsin**

S.A. Sabbagh¹, R.E. Bell², S. Gerhardt², J.E. Menard², J.W. Berkery¹, J.M. Bialek¹, D.A. Gates², B. LeBlanc², F. Levinton³, K. Tritz⁴, H. Yu³

¹Department of Applied Physics, Columbia University ²Princeton Plasma Physics Laboratory ³Nova Photonics, Inc. ⁴Johns Hopkins University

NSTX Results Review Princeton Plasma Physics Laboratory August 7th, 2008

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kvoto U Kvushu U Kyushu Tokai U **NIFS** Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST ENEA. Frascati CEA, Cadarache **IPP, Jülich IPP.** Garching ASCR, Czech Rep **U** Quebec

XP802: Active RWM stabilization system optimization and ITER support

Goals

- □ Alter active control configuration to achieve <u>highly reliable</u> RWM stabilization at various plasma rotation, ω_{ϕ}
 - Upper/lower RWM B_r, B_p sensors, follow from best CY2007 feedback settings
 - B_r sensor feedback provides RFA correction, B_p provide RWM stabilization
 - Determine if stable, low $\omega_{\phi} < \omega_{*i}$ operation exists with feedback turned off
 - If achieved, control system open as a tool for all NSTX XPs as desired
- Specific ITER support requests
 - Study effect of applied time delay on feedback (requires control system time delay capability)
 - Determine impact of a large toroidal gap on active RWM stabilization to simulate ITER port plug coil geometry (take out one of six control coils)

Progress

- B_r sensors used successfully with B_p sensors for n = 1 feedback control
- □ n = 1 control system used as tool in many XPs; dynamics examined
- □ ITER support requests examined with limited run time

Active RWM control and error field correction maintain high β_N plasma

- n = 1 active control
 - □ Upper/lower B_p sensors
 - Favorable B, feedback settings found in 2008
 - Fast response ~ 1 ms
- n = 3 DC field correction
 - \square best maintains ω_{ϕ}
 - but RWMs observed w/o feedback at high ω_{ϕ}
- NSTX record pulse lengths
 - □ Up to 1.8s (shown previously)
- n = 1 feedback now being used as tool in many XPs
 - > 200 shots in 2008 with active feedback in 10 XPs
- Present goal to increase reliability, performance
 - Feedback success ~ 74%
 - RWM more likely when NTM stabilized (e.g. by lithium)
 - Poloidal deformation of mode

Initial RWM evolves into rotating global kink during n=1 feedback

Plasma suffers beta collapse 2 after feedback is turned off

NSTX Results Review - XP802 - S.A. Sabbagh

Soft X-rays show transition from RWM to global kink

Initial RWM locked signature spins up, amplitude dies away

NSTX Results Review - XP802 - S.A. Sabbagh

NSTX Results Review - XP802 - S.A. Sabbagh

<u>Terminating event appears to be an internal kink</u>

<u>XP802 results show RWM control details at various V_{ϕ} </u>

- General conclusions (so far)
 - n = 1 feedback system has produced far greater reliability of discharge avoiding RWM
 - More detailed statistics being compiled
 - n = 1 feedback system does not insure stability against RWM
 - e.g. failures from fast mode growth, mode deformation
 - Mode characteristics appear to be RWM, not tearing
 - Unlike present observation/conclusion by DIII-D
 - Mode spin up, converts to global kink mode initially, tearing appears later
 - Feedback system might be easing transition to rotating kink by altering boundary condition
 - Full RWM sensor set used in feedback
 - Increased "latency" for control current activation reduces effectiveness of RWM control
 - Deactivating two diametrically opposed control coils defeats feedback

• Further analysis to determine reason for feedback failure