

XP818: Exploring ELM Mitigation with Midplane Control Coils

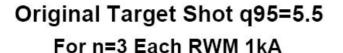
College W&M **Colorado Sch Mines** Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics New York U Old Dominion U ORNL **PPPL** PSI Princeton U SNL Think Tank. Inc. UC Davis UC Irvine UCLA UCSD **U** Colorado **U** Maryland **U** Rochester **U** Washington **U** Wisconsin

S. A. Sabbagh, J-K. Park, T. Evans, S. Gerhardt, R. Maingi, J.E. Menard, many others... (joint ELM mitigation team)

NSTX Results Review Princeton Plasma Physics Laboratory August 7th, 2008

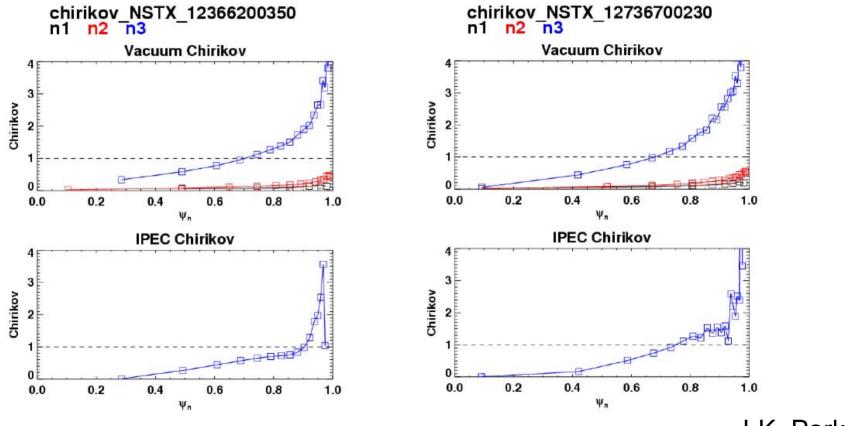
Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kvoto U Kvushu U Kyushu Tokai U **NIFS** Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST ENEA. Frascati CEA, Cadarache **IPP**, Jülich **IPP.** Garching ASCR, Czech Rep **U** Quebec

XP818: Exploratory approach to finding ELM mitigation solution with midplane non-axisymmetric coils


Goal

- Demonstration of ELM mitigation with NSTX midplane RWM coil set
- Approach
 - Target development
 - (i) low $q_{95} < 6$; (ii) sweep q_{95} to insure mitigation not missed due to resonance ; (iii) high $q_{95} > 8$
 - □ Application of DC fields (broader *n* spectrum, new 2008 capabilities)
 - Past odd parity fields (n = 3) operating on low q_{95} target
 - New even parity field (n = 2 (strong n = 4), 6) capability for 2008
 - New combined odd/even parity (present favorite n = 2 + 3)
 - Application of AC fields
 - Using either/both odd and even parity fields
 - Repeat techniques showing most potential in low recycling (post-LITER)

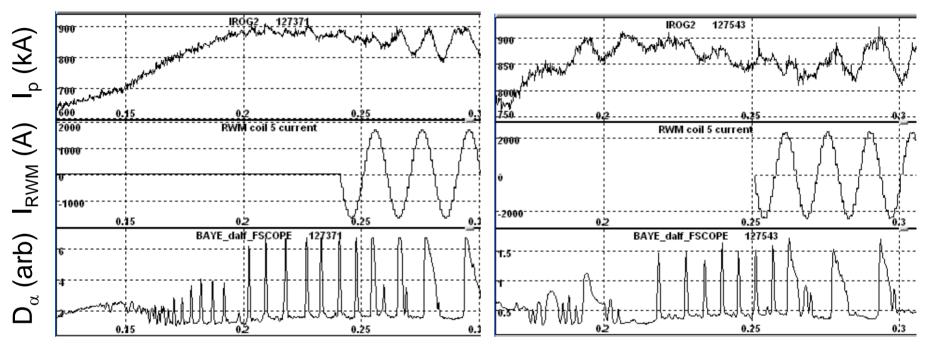
Overall Progress


ELM affected by fields, not mitigated, LITER led to ELM mitigation w/o applied field, edge plasma rotation an important variable?

Chirikov parameter (island overlap) computed for fields applied

XP818 1: Target Shot q95=7

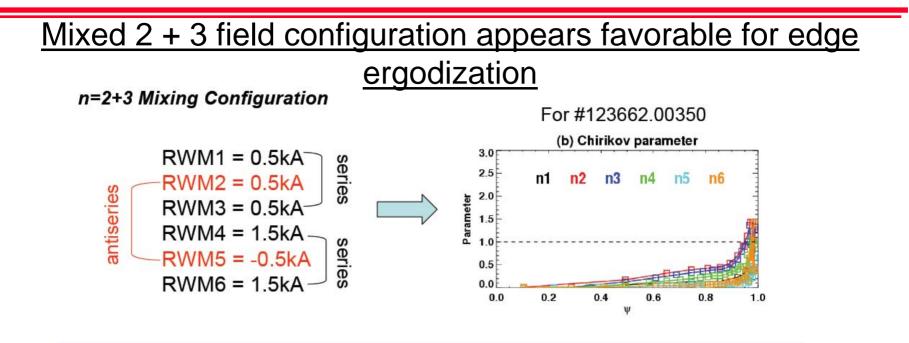
For n=3 Each RWM 1kA


IPEC showed significant changes to vacuum solution

J-K. Park

Reduced ELM frequency observed in several applied field configurations

n = 3 AC field, 70 Hz, 3.8 kA peak-to-peak


n = 2 AC field, 70 Hz, 5.5 kA peak-to-peak

t (s)

- t (s)
- ELMs broaden, roughly match frequency of applied field
 - Broadening due to multiple ELMs/filaments
- Subsequent DC field application showed similar effect

Frequency of broadened ELM events similar in both DC and AC field application

We can produce this by RWM2 RWM3 RWM4 RMW5 RWM1 RMW6 current n=2 1 0 1 1 0 1 x1kA x0.5kA n=3 -1 1 -1 1 -1 1 n=2+3 0.5 0.5 0.5 1.5 -0.5 1.5

or with any combinations using different currents

Chirikov > 1 restricted to edge for broad n spectrum
 NSTX Results Review - XP818 – Sabbagh/Park/Maingi/Gerhardt

J-K. Park

5

ELMs not mitigated with n = 2 + 3 configuration; frequency lowered at full current ELM target control shot (no n > 1 field,) n = 2+3 field, 2.0 - 3.0kA peak RWM current ROG2 IROG2 I_p (kA) 800 700 EFIT02 a95 127889 EFIT02 g95 127905 q₉₅ 0.3 0.4 (arb) I_{RWM} (A) RWM coil 5 current (kA) 127889 02 BAYE dalf FSCOPE BAYE dalf ESCOL 127889 ರ t (s) t (s) Decrease in ELM frequency at maximum applied field

□ Continue to investigate physical cause for changes in ELM behavior

Results consistent with Chirikov parameter > 1 being necessary, not sufficient condition for ELM mitigation; but could be due to different physics

ELMs not mitigated with expanded applied field configuration, further analysis to focus on discovering key physics

- Operated as low q_{95} as possible that lead to reproducible Type I ELMs
 - □ Lower q_{95} thought to be favorable for ELM mitigation
 - Range of $q_{95} \sim 7 8$, swept q_{95} to insure mitigation not missed due to resonance
- □ Used new 2008 capabilities to apply broader *n* spectrum,
 - □ *n* = 2; 3; 2 + 3; n = 6 configurations
 - n = 6 tried in other XPs saw no effect on plasma
 - ELMs broadened (multiple events), lowered in frequency mostly by AC fields, but similar effect also seen with DC fields
 - n = 2 + 3 configuration showed reduction in ELM frequency at maximum permitted coil current
 Is edge pumping a necessary condition?
- □ Lithium attempted for pumping edge V_{ϕ} may be a key variable
 - Small Li evaporation (~10 mg/min) quickly led to ELM mitigation without application of non-axisymmetric fields (as in XP728 (Mansfield, et al.))
 - XP728, 809, 818 results show ELM mitigation / destabilization may correlate with increased / reduced edge plasma rotation

• Increased edge $V_{\phi} =$ mitigation, reduced $V_{\phi} =$ ELM not mitigated; can trigger