

High frequency AE structure in plasma with T_e flattening

NA Crocker, ED Fredrickson, NN Gorelenkov and many others ... NSTX Results and Theory Review August, 2008

High frequency AEs observed in plasma with T_e flattening

High frequency AEs are core localized

- Reflectometers show high frequency AEs: modes are core localized
- For typical mode (t = 233 ms, f = 1.24 MHz, n = 8), δn/n₀ ~ 1.5×10⁻⁵
 - -modeling required for best $\delta n/n_{0};\,$ actual amplitude may be several times larger.
 - multiple simultaneous modes observed, some with δb several times larger \Rightarrow total $\delta n/n_0$ >> 10^{-5}
- Typical mode is predominantly $\delta b_{||}$
 - δb_φ/B₀ ~ δb_θ/B₀ ~ 10⁻⁶, δb_θ/δb_φ ≈ 0.7; δb || B₀ at R = 130 cm (MSE not used)

- Mode identification (GAE or CAE) difficult: Mixed eigenmode (linear coupling)?
 - \bullet Core localized \Rightarrow GAE
 - predominantly $\delta b_{||} \Rightarrow CAE$.
 - n = 8 too high for GAE?

