GYRO Simulations of ETG Turbulence in NSTX

D. R. Mikkelsen and S. M. Kaye, PPPL R. Waltz and J. Candy, GA

> NSTX Results Review 5-6 August 2008

Overview

Converging simulations at r/a=0.6 in NBI L-mode.

- Can use small mass ratio to speed up simulations. ExB shearing sets the saturation level. ExB shearing removes need for modes with $k_{\theta}\rho_{s}$ <1.
- Initial studies at r/a=0.3 with HHFW are harder. Nearly stabilized by negative magnetic shear, high Z_{eff} and high T_e/T_i , but time histories unknown.
- Will examine more fully documented NBI discharges to define range and effects of magnetic shear, Z_{eff} and T_e/T_i ; guide simulations of HHFW plasmas.

Converged with Small Mass Ratio

Varied m_D/m_e from 20² to 40², but electron heat flux drops only ~20%. k_θ spectrum is not pinned to either ρ_s or ρ_e scales, intermediate scales are important.

Transport not set purely by electron scale

Growth rates in electron units are independent of m_D/m_e If saturation processes were tied to electron scales, then χ_e expressed in ion units should drop with m_e/m_D . But transport in ion units is independent of m_D/m_e

ExB Shearing Rate Sets the Heat Flux Reducing ExB shearing rate raises χ_e , and potential fluctuation amplitude, ϕ/T_e , also rises; k_{θ} spectrum downshifts slightly.

Need $k_{\theta}\rho_{s}$ ~ 1 to converge when ExB rate is low.

ExB Shear Controls Eddy Size

ExB shearing rate varied: 2X to 1/4X actual rate. Eddies grow (in 2D) as shearing rate is reduced. Extent of radial domain is ~400 ρ_e .

1/4X

1/2X

experimental ExB rate

2X

Future work

Mass ratio convergence study at r/a=0.6 in NBI L-mode. with lower ExB shearing rate and higher maximum $k_{\theta}\rho_{s}$ ~1.

Linear stability for fully documented NBI discharges. find dependences on magnetic shear, Z_{eff} , T_e/T_i .

Experimentally validate stabilization by: negative mag. shear, high Z_{eff} and T_e/T_i.

Nonlinear studies in HHFW and NBI plasmas with high-k data.