#### Simulations of the effect of beam driven Global Alfvén Eigenmodes on electron transport

N.N. Gorelenkov

Princeton Plasma Physics Laboratory, Princeton

and A. Boozer, L. Delgado-Aparicio, E. Fredrickson, S. Kaye, D. Stutman, K. Tritz, R. White

NSTX Monday meeting, PPPL, July 14th, 2008



#### Motivation



- e-transport seems to be driven by sub-cyclotron modes - D. Stutman, recent presentations
  - GAEs are candidates
- location of  $T_e$ -flat region is  $r/a < \sim 0.25$  inside of  $q_{min}$  surface !!!
- $\Rightarrow$  we can apply theory developed for GAEs/CAEs, ORBIT
  - aim at heat diffusion coefficient on the order  $\geq 2m^2/sec$ ,
  - what is required mode amplitude?

# Experimental Observations and Theory

- Experiment:
  - Multiple sub-ion cyclotron frequency instabilities are observed in NSTX.
  - Frequency typically scales with Alfvén speed and dispersion.
  - Modes are driven by fast super Alfvénic ions.
  - GAE frequencies intersect, polarization  $\delta B_{\perp} > \delta B_{\parallel}$
  - CAE frequencies do not intersect, polarization  $\delta B_{\parallel} > \delta B_{\perp}$ .
- Theory:
  - GAEs: Appert'82, in NSTX discovered by Fredrickson, with input from HYM (E.Belova presentation tomorrow).
  - Mode identification: shear and/or compressional (magnetosonic)
    AEs is easier in NSTX due to instability spectrum peak separation.
  - Instability properties can be used to diagnose plasma: fast ion distribution, q-profile.
  - damped on electrons if  $\omega < \omega_{ci}$ : may expect effects on electrons.

## Experimental features of GAE instabilities



Dashed curves are GAE dispersion  $\omega_{GAE} \simeq v_{A0}(m - nq_0)/q_0 R.$ 

- Observed frequencies of different (m,n) modes intersect
   ⇒ characteristic of shear Alfvén Eigenmodes.
- We identified them as Global Alfvén Eigenmodes (GAE), (APPERT, 1982).
- GAEs (center) become stable after sawtooth, whereas CAEs (edge) become unstable.

N.N.Gorelenkov, E. Fredrickson, E. Belova et.al., IAEA'02, NF'03.

# Alfvén continuum and GAE structure from NOVA



 $\omega_{GAE}\simeq v_{A0}(m-nq_0)/q_0R.$ 

- Many radial modes can exist below each A-continuum line
  - Frequencies are shifted downward from the continuum up to 30%.
- HYM GAE modeling will be presented tomorrow by E.Belova on WEP session

#### GAEs are localized in the core due to density and q-profiles



Standard continuum damping calculation produces damping rate to the order of magnitude  $\Im \delta \omega / |\omega_0| \sim (x_2/x_s)^{2m+\delta}$  is small for large to medium *m*'s (Gorelenkov, NF, '03).

GAE mode radial width is proportional to  $m^{-1}$ .

## Employ ORBIT to study e-transport due to GAEs



**ORBIT** ideal MHD perturbation:

$$\alpha = \alpha_0 e^{-m^2(r-r_0)^2/\delta r^2}$$

Baseline case:

- $\alpha_0 = 3 \times 10^{-5} \Rightarrow \delta B_r/B = 10^{-3}$  at r/a = 0.2 (modes peak).
- 15 GAEs with n = 1 10, *m* is such that f = 400 600kHz.

## Characteristic frequencies

- $f_{GAE} \sim 400 600 kHz$ , may go higher.
- transit (passing) frequency  $f_{te} = \frac{1}{2\pi} \frac{v_{\parallel}}{qR} = 1.5 MHz T_e = 1 keV$ ,
- bounce (trapped) frequency  $f_{be} = \frac{1}{2\pi} \frac{v_{\perp}}{qR} \sqrt{\frac{r}{2R}} = 430 kHz$  at q = 2, R = 1m, a = 0.8m, r/a = 0.2.
- electron Coulomb scattering frequency  $\omega_{ce} = 0.7 \times 10^{11} sec^{-1}$ ,  $v_e/\omega_{ce} = 3 \times 10^{-7}$ , e-i collisions double this.
- thermal ion cyclotron frequency  $f_{ci} = 3MHz$ .

 $f_{GAE} \sim f_{be}$  and may be  $\sim f_{te}$ !!!

#### Test particle initial and final e-distributions



Initial ring distribution of electrons on one surface. ORBIT run for *3ms* with Maxwellian electrons with  $T_e = 1 keV$ .

#### Which electrons are interacting?



Evaluate characteristic displacement for different electrons  $T_e = 1 keV$ 

$$\left\langle \left| \psi^2 - \left\langle \psi \right\rangle^2 \right| \right\rangle,$$

in  $\lambda = \mu B_0/E$ , *E* plane.

Trapped electrons are mostly effected by GAEs  $\lambda \simeq 1$ .

Weak passing electron interactions are due to  $\omega - k_{\parallel}v_{\parallel} = 0$  or  $\omega = k_{\parallel}\sigma_{\parallel}\sqrt{2E}\sqrt{1-\lambda}$ .

#### Radial dependence of electron diffusion



Peak of D(r) is near the mode amplitude peak.

Low-*m* modes contribute more to the diffusion.

Baseline radial point is at r/a = 0.22.

 $\chi_e$  is on the same order as  $D_e$  ( $\chi_e = 3D_e/2$  for Maxwellian)

$$\frac{\chi_e}{D_e} = \frac{\left\langle \mathscr{E}^2 D_e \right\rangle}{T_e^2 \left\langle D_e \right\rangle} - \frac{\left\langle \mathscr{E} D_e \right\rangle^2}{T_e^2 \left\langle D_e \right\rangle^2}.$$

# GAE amplitude dependence of electron diffusion



Baseline case  $v_e/\omega_{ce} = 6 \times 10^{-7}$ . Shown is diffusion at r/a = 0.22.

Expected diffusion at resonance island overlap is  $D \sim \alpha$ .

 $\Rightarrow$  if  $D \sim \alpha^2$  then secondary islands generations/overlaps are expected.

For  $D \simeq 10m^2/sec$  diffusion we need  $\alpha \sim 10^{-4}$  or  $\delta B_r/B \simeq 3 \times 10^{-3}$ or  $\frac{\xi_r}{R} \sim \alpha \frac{m}{k_{\parallel}r} \sim \frac{\alpha}{\varepsilon} \sim 5 \times 10^{-4}$ .

# Summary

- GAEs with sufficiently strong amplitude can induce electron transport in NSTX.
- Electron transport is due to resonances of trapped electrons with GAEs at f = 400 600kHz.
- Phase space resonance overlapping is the mechanism of e-transport.
- For trapped electrons  $E_{\parallel}$  is not important, but maybe important for passing electrons diffusion.
- $E_{\parallel}$  can be introduced to increase diffusion.
- Velocity dependence of Coulomb scattering frequency will also increase the diffusion.