

Summary of XP813 – Momentum Transport Studies Using n=3 Non-Resonant Braking

W.M. Solomon

Momentum Transport Studies Using n=3 Non-Resonant Braking

- Aim: Continue characterizing NSTX momentum transport
 - Experimentally distinguish turbulent pinch theories
 - Achieved large variation in density scale length, depending on when in the discharge the perturbation was applied

STX

- Look at I_p and B_{ϕ} variation in momentum transport (resolved into χ_{ϕ} and V_{pinch})

 \checkmark Successfully completed both I_p and $B_{_{0}}$ scan

• Technique:

 Use n=3 non-resonant magnetic perturbations to distort the rotation profile, allowing for separation of the roles of momentum diffusion vs non-diffusive (pinch).

Acquired Excellent Data for Both I_p and B_t scans

• TRANSP analysis performed to investigate rotation relaxation following perturbation

- Does χ_{ϕ} (and V^{pinch}) scale like χ_{i} or does e- transport matter?

VSTX

n=3 Perturbation Provided Necessary Non-Local Distortion to Rotation Profile

 Simple model for momentum flux

- Elliptic tracks of dV_{ϕ}/dr vs V_{ϕ} indicate that determination of χ_{ϕ} and V_{ϕ}^{pinch} possible.
 - Must change V_{ϕ} independently of dV_{ϕ}/dr to avoid collinearity of data set

No Obvious Correlation Identified Between Momentum Transport Profiles and B_t or I

Different to thermal transport (Kaye et al PRL 2007)

Perhaps a Weak Dependence of χ_φ with B_t at Select Radii

Variation in Density Scale Length: Permits Comparison of Theory for Momentum Pinch

Inclusion of gradient scale length appears to give a better fit to the experimentally determined pinch velocity