

XP 808 - AC mode induced fast-ion transport and MHD spectroscopy

NA Crocker, ED Fredrickson, NN Gorelenkov and many others ... NSTX Results and Theory Review August, 2008

Goals of XP 808

- Assess role of Alfvén Cascade modes in fast-ion transport
 - Identify mechanism for sustained fast-ion loss (sFLIP) associated with AC modes
 - Assess role in "avalanche" and "diffusive" transport
- Test MHD spectroscopy (determination of q_{\min} from $f_{\rm AC}$) at high β and $\nabla\beta$

• $\nabla \beta$ dependence relatively unexplored experimentally

• γ (adiabatic index): sort out roles of β_e , β_i and β_f in accoustic coupling (geodesic curvature)

$$\omega_{AC}^{2} = k_{\parallel}^{2} v_{A}^{2} + \omega_{geo}^{2} + \omega_{\nabla\beta}^{2}$$
$$k_{\parallel} = (m/q_{min} - n)/R \quad \omega_{geo}^{2} = 2\gamma P/\rho$$

Results

- AC mode spectra measured (edge δb , reflectometry, inteferometry)
- fast-ion population measurements obtained:
 - sFLIP: energy+pitch resolved at 1 kHz; also, fast "total loss" measurement
 - •7-angle vertical NPA scan + ssNPA
 - FIDA spectra and total light profiles
- Equilibrium variations to test MHD spectroscopy:
 - n_e ~ 0.5 2.5 x 10^{19} m⁻³ $\Rightarrow \beta$ and V_A variation
 - B = 0.45 and 0.55 T \Rightarrow β and V_A variation
 - Ion mass variation: D and He \Rightarrow β_{i} and ho variation
 - Electron heating with HHFW $\Rightarrow \beta_{e}$ and ρ variation

Planned Analysis

- Two approaches to determine fast-ion transport (both "diffusive" and "avalanche")
 - 1) Calculate fast-ion transport from mode structure
 - Use NOVA-K + reflectometry and interferometry measurements to determine mode structure and amplitude
 - Use ORBIT to calculate perturbed fast-ion trajectories
 - 2) Use transport modeling to identify impact on fast-ion population
 - Use TRANSP to model expected population without modes
 - Determine "anomalous" transport consistent with NPA, ssNPA and FIDA
- Also use ORBIT calculations to identify direct loss mechanism
- To test MHD spectroscopy: compare mode spectra with NOVA-K calculations
 - Exploit variation of ion mass, B, n_e and T_e and $\nabla\beta$ to test predictions for γ .

Improved mode structure measurements available in 2009

• By March 2009, 16 reflectometer channels covering 35 to 75 GHz

- Better mode structure spatial resolution
- 1.5 7.0 × 10^{19} m⁻³ in O-mode
- Mode structure in high density plasmas (when H-mode evolves to monotonic density profile)