

Supported by



### XP943: Optimization of ELM Pace-making with 3D fields

College W&M **Colorado Sch Mines** Columbia U CompX **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL PPPL PSI Princeton U Purdue U SNL Think Tank. Inc. **UC Davis** UC Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Washington **U** Wisconsin

### J.M. Canik, A.C. Sontag, ORNL

#### NSTX 2009 Results Review Princeton, NJ Sep 15-16. 2009



Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache **IPP**, Jülich **IPP, Garching** ASCR, Czech Rep **U** Quebec

### Magnetic ELM triggering has been applied to Lithium enhanced ELM-free H-modes

- ELM-free H-mode shots have very large radiated power
- ELM pacing able to reduce this problem
- Need to develop scenario for long-pulse, steady-state





### **Triggered ELMs tend to be large**



- Average triggered ELM size for a typical discharge is  $<\Delta W/W_{tot} > = 10\%$
- Very large energy excursions occur on an ELM after the previous n=3 pulse fails to trigger
  - In these cases <ΔW<sub>tot</sub>/W> can be 20% or more
  - Need to maintain high triggering reliability and frequency



### XP943: Increasing the n=3 perturbation strength triggers ELMs faster



- With 1.2 kA pulses of in perturbation coils, ELMs are triggered in ~8 ms
- At 2.4 kA, ELM onset is reduced to ~3 ms
- Limited by field penetration time through vessel (estimated to be ~4 ms)
  - Internal coils may trigger much faster
- Provides a means for improving triggering efficiency for fixed pulse duration

## Maximizing the n=3 pulse amplitude allows high frequency triggering with very high reliability



- ELM frequencies up to 62.5 Hz have been achieved while maintaining 100% triggering efficiency
  - Allows average ELM size to be reduced
  - Internal coils should allow faster triggering, higher frequency
- Time-average magnetic braking of rotation is strong at high frequencies
  - Can also be greatly improved with internal coils



### ELM size can be decreased by raising triggering frequency



- ELMs are very large (ΔW/W<sub>tot</sub> ~ 15%) when triggered at 10 Hz
- Average ELM size can be reduced to ~5% by increasing triggering frequency to 60 Hz
  - Some outliers remain
  - Triggering reliability drops at high frequency, might be improved with internal coils
- Some evidence that triggered ELMs are smaller at reduced plasma current
  - Evident at highest frequencies

### Lower triggering frequency may be optimal for impurity control without adversely affecting energy confinement



**(()** NSTX

**NSTX RR 09–XP943** 

# Combining ELM pacing with optimized fueling successful in producing quasi-stationary global parameters



 Fueling from center stack valve was reduced, replaced with SGI

- Applying n=3 pulses arrested the line-averaged density and total radiated power for 0.3 s
- Discharge performance was limited by n=1 rotating MHD



### ...but profiles are still evolving



- Dashed lines: electron, carbon, and radiation densities at axis
  - Black: control shot, no ELMs
  - Red: ELM triggering begins at t=0.4s
- Solid lines: edge values (8cm inside separatrix at outer midplane)
- Trends of all are similar
  - Core values increase at a rate similar to control shot
  - Edge values decrease in time
- Implied pressure gradient increase may be driving n=1 activity