Investigating Direct Plasma Current Coupling to the Diamagnetic Measurement Using Reversed B_T

M.G. Bell

Diamagnetic Flux Yields Plasma Perpendicular Energy

Basic equilibrium relation [e.g. Lao et al., Nucl. Fusion 25 (1985) 1421]

$$W_{\perp} = \int_{\Omega} p_{\perp} dV = \int_{\Omega} \frac{B_{tv}^{2} - B_{t}^{2}}{2\mu_{0}} dV + \int_{\Gamma} \frac{B_{p}^{2}}{2\mu_{0}} [(R - R_{t})\mathbf{e}_{R} + Z\mathbf{e}_{Z}] \cdot d\mathbf{S}$$

= $I_{t}\phi_{d}\gamma_{d} + \frac{1}{4}\mu_{0}R_{p}I_{p}^{2}\gamma_{p}$

where

 W_{\perp} , p_{\perp} : plasma energy and pressure perpendicular to the toroidal field

 B_{tv} , B_t : vacuum and actual toroidal field in the plasma region

- B_p : poloidal field;
- Ω , dV: plasma volume and its element

 Γ , dS: plasma bounding surface and its vector element

- \mathbf{e}_{R} , \mathbf{e}_{Z} : unit radial (*R*) and major axial displacement (*Z*) vectors;
- R_t : curvature weighted average major radius
- I_t , I_p : toroidal field coil threading current and plasma current
- ϕ_d : toroidal flux displaced by the plasma from an encircling loop
- R_{p} : representative plasma major radius
- γ_d , γ_p : coefficients; γ_d , $\gamma_p \rightarrow 1$ for high aspect-ratio circular plasma

In NSTX, use TF coil itself to measure flux displaced by plasma

$$N_{TF}\phi_{d} = -\int_{0}^{t} V_{TF} dt' + L_{TF} I_{TF} + \int_{0}^{t} R_{TF} I_{TF} dt' + \sum_{j} M_{TF;j} I_{j} + \sum_{PF} M_{TF;PF} I_{PF}$$

- N_{TF} : number of turns in TF coil (36)
- V_{TF}, I_{TF} : coil terminal voltage and current
- L_{TF} , R_{TF} : coil inductance and resistance (as functions of time)
- $I_{PF}, M_{TF:PF}$: PF coil currents and their mutual inductances to the TF, including plasma current direct coupling
- $I_{j}, M_{TF:j}$: eddy currents in structure and mutual inductances
- Model effects of TF resistive heating and calibrate in TF shots
- Measure external PF couplings by energizing each coil
- Direct I_p coupling occurs through TF coil interconnections and out-of-radial-plane misalignments
- Measure direct I_p coupling to TF by reversing I_p/I_{TF}

$$\Delta \phi_{TF} = -\phi_d + M_{TF,p} I_p / N_{TF} = \left[\frac{1}{4} \mu_0 \left(\gamma_p / \gamma_d \right) R_p I_p^2 - W_\perp / \gamma_d \right] / I_t + (M_{TF,p} / N_{TF}) I_p$$

• Use low- β ($W_{\perp} << 1/4 \mu_0 R_p I_p^2$) so effect of changing γ_{d} , γ_{d} minimized

Compare Similar Shots in Early Low-β Phase with Normal (-ve) and Reversed (+ve) TF

• From overlap of normal and reversed TF traces conclude that direct I_p coupling is small: probably below quoted ±3mWb uncertainty