

Supported by

Initial Analysis of XP-950: Long-Pulse Development at High β_T .

College W&M **Colorado Sch Mines** Columbia U CompX **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL PPPL PSI **Princeton U** Purdue U **SNL** Think Tank, Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Washington **U Wisconsin**

S. P. Gerhardt, D.A. Gates, J.E. Menard, S.A. Sabbagh, R. Bell, B. LeBlanc and the NSTX Research Team

NSTX Research Forum

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA. Frascati CEA, Cadarache **IPP**, Jülich **IPP**, Garching ASCR, Czech Rep **U** Quebec

Goal is to Achieve Long Pulse With $\beta_T \ge 25\%$

Spherical torus might make for attractive facility for nuclear component testing:
More recent ST-FNSF designs are more "conservative"

	ST-CFT, Phase 1 (Peng 2005, PPCF)	ST-CFT, Phase 2 (Peng 2005, PPCF)	ST-CFT, Phase 3 (Peng 2005, PPCF)	ST-CTF, (Wilson 2004, IAEA)
Wall Loading (MW/m ²)	0.1	1	2	1.5
Elongation	3.1	3.1	3.1	2.5
β _T	14	18	28	22
β _N	3.8	3.8	5.9	3.5
f _{BS} (%)	0.58	0.49	0.5	0.4
f _{NI} (%)	1.	1.	1.	1.
I _N =I _P /aB _T (MA/mT)	3.8	4.7	5.8	6.1
H _{98y,2}	1.5	1.5	1.5	1.3

- Goal of this XP: study discharges with parameters as close to these values as possible.
 - However, clear that 100% non-inductive operation is unavailable without additional current drive.
- Method: Operate at highest $I_N = I_p / aB_T$, κ , & β_N , consistent with long pulse.

Some Unique Discharges Were Made

3

Achieved Discharges Push the Boundary of NSTX High- β_T , Long-Pulse Operating Space

XP-948 2009 2008 2007 2006 2005 2004 2003-02 2001 35 14 *Goal:* $10 < \beta_N / l_i < 14$ 30 *Goal: 22< β_τ(%) <30* 12 25 10 <β_N>/<l_i> 20 <₿₇> 10 1.5 0.0 0.5 1.5 0.0 0.5 1.0 1.0 $\tau_{\text{flat-top}}$ (sec.) $\tau_{\text{flat-top}}$ (sec.) 2011 2010 2009 2008 2007 2006 2005 2004 200 <Bu> 3 *Goal:* 4< *β*_N <6 Goal: I_N (MA/mT)~6 0.0 1.5 0.5 1.0 0.0 0.5 1.0 1.5 $\tau_{\text{flat-top}}$ (sec.) τ_{flat-top} (sec.)

XP-948, NSTX Results Review

Too much power→Ideal MHD Too little power→Rotating MHD.

Actively working on computing creditable MSE/T_{ρ} constrained equilibria for these high- κ shots.

5

β_N Control Commissioned as Part of XP-948

- β_{N} control was a substantial background effort during the FY-09 run. ٠
 - Main effort by S.P. Gerhardt, D. A. Mastrovito, and D.A. Gates
- β_{N} control was commissioned as part of XP-948, used in XP-943.
- Gains not fully optimized...need to do some modeling during break and revisit.
 - Improved rtEFIT basis vectors implemented after these shots, should be very helpful.
- Once again, turning down the NB power causes core-MHD

- Shots from XP-934, RWM feedback and no magnetic braking. Feedback gains changed between shots.
- β_N requests of 4, 5, and 6
- Reconstructed β_N evolution follows the requests of the trends
- Rotating MHD comes earliest when the beams (and torque) are reduced.
- Core MHD leads to a similar low rotation state in all cases

6

Beginning Analysis of Non-Inductive Current Drive (I)

135129: I_P =1100 kA and B_T =0.45T Max β_T =25% $f_{N\Gamma}$ ~45%

Preliminary!

Beginning Analysis of Non-Inductive Current Drive (II)

- Preliminary results
 - Reasonable agreement in the total current.
 - 50% inductive, 50% non-inductive
 - Using "homegrown" Sauter B.S. model reduces total current to 90% of reconstruction.
- Detailed radial structures don't match well.
 - Reconstruction may be too smooth (though match to PA data is reasonable)
 - Need to refine kinetic profile mapping, different ways of determining Z_{eff}

Beginning Analysis of Confinement

134837: I_{P} =1000 kA and B_{T} =0.4T Max β_{T} =30% f_{N} ~50% H_{98} ~0.8 f_{GW} ~0.8 135129: I_P =1100 kA and B_T =0.45T Max β_T =25% f_{NI} ~45% H_{98} ~0.8 f_{GW} ~0.78

Increases in Carbon, Radiated Power Remain a Problem in These Discharges

Conclusions and Next Steps

- Were successful in producing discharges with high- β_{T} .
 - Modest extension of the NSTX operating space
- Parameter space appears highly constrained:
 - Too much input power: rapid, ideal-mode disruptions
 - Reduce the input power: too-rapid q evolution leads to rotating core mhd.
- For best shots (*preliminary*):
 - $\beta_T \sim 25\% 30\%$
 - f_{BS} =35%, f_{NI} =50%
 - H_{98y,2}~0.8
- Next Steps:
 - Complete confinement and NI-fraction analysis for the full high- κ data set (XP-836 & XP948)
 - Implement X-point height control to enable highest- κ with large I_{OH}.
 - Implement Control tools to allow operation at highest possible β_N .
 - Improved rtEFIT Basis Functions.
 - Further optimization of DEFC and RWM feedback.
 - β_N control to operate near, but not cross, stability boundaries.
 - Reduce the Density with LLD!

Much Analysis To Do

 Presentation of this and other NSTX results at mid-October ITPA IOS meeting.

