ELM Precursors in NSTX

F. Kelly^{*} E. Fredrickson^a, S.Gerhardt^a, R. Maingi^b, J. Menard^a, S. Sabbagh^c, H. Takahashi^a ^{*}Unaffiliated ^aPrinceton Plasma Physics Laboratory, Princeton, NJ USA ^bOak Ridge National Laboratory, Oak Ridge, TN USA ^cColumbia U., New York, NY USA

> 2009 NSTX Results and Theory Review PPPL Room B318 September 15, 2009

STX

NSTX 129015 - without lithium

NSTX 129015 - without lithium

Spectrogram

NSTX

NSTX 129015 - ELMs at 0.3400 and 0.3410 s

shot 129015, no Doppler corr

NSTX

NSTX 129030 w / lithium - ELM precursors for 0.4292 s

NSTX

H-mode MHD activity BLM1

NSTX 129030 w / lithium - ELM at 0.4292 s

NSTX

NSTX 130670 w / nRMP – ELM at 0.6036 s

M NSTX

Discussion of Results

VSTX

n = 2,3,4,5,6 modes -> slowly growing ELM that are smaller n= 1 modes appear to be necessary for fast growing, large amplitude ELMS SOL currents are likely candidates for n= 1/ n= 2 modes

ELM sequence outlined by T. Evans et al. JNM 390-391 (2009) 789.

- Transient event initiated by peeling-ballooning mode as pedestal pressure gradient limit > marginal stability limit. Initial pulse of heat and particles propagates into preexisting homoclinic separatrix tangle.
- 2) Onset of thermoelectric current driven between outer and inner target plates due to T_e difference between plates from initial heat pulse.
- 3) Original helical filament grows explosively as thermoelectric currents amplify the lobes of the homoclinic tangle and induce strong pedestal stochasticity. Results in self-amplification ob lobes due to positive feedback loop between lobe size, stochastic layer width and increase heat flux to target plates driving the current.
- 4) ELM crash- temperature in pedestal drops enough for plasma to become more collisional and resistive. A) Shuts down energy source for thermoelectric currents collapsing lobes to pre-ELM configuration. B) Decrease electron collisional mfp compared to connection length of filamentary lobes which reduces parallel thermal conductivity and shuts down heat flux to target plates.