First real-time detection of surface dust in a tokamak

Charles Skinner, Lane Roquemore, Henry Kugel, Robert Marsala, Tom Provost PPPL with National Undergraduate Fellows:

Aaron Bader, now at MIT; Chris. Voinier, College of New Jersey; Colin Parker, now at Princeton U.; Robert Hensley, Embry-Riddle Aeronautical Univ;

Dennis Boyle, Columbia University now at PPPL, Alejandro Campos, Rochester Univ.

<u>Motivation:</u>

- In-vessel dust has important safety and operational consequences for ITER.
- Amount of dust in ITER is high due to more intense PMI and longer pulse length.
- 1. 670 kg is limit on mobilizable cold dust (public safety).
- 2. 6 kg is limit on W, Be, C hot dust
 - (vacuum vessel integrity really a 4 kg H_2 2 bar overpressure limit)
- 3. Transport of W dust could prevent fusion burn (limit unknown).
- 4. Dust could obscure diagnostic first mirrors (limit unknown).
- Tritiated dust can levitate
- Is more hazardous than HTO vapor.

ITER plans:

- Diagnose dust inventory from divertor erosion measurements (laser rangefinder).
- Plus local dust monitors (so far not demonstrated in tokamaks).

Outline of talk:

- Electrostatic surface dust detector developed at PPPL.
- Large (~ x10,000) improvements in sensitivity.
- First demonstration in NSTX.

Electrostatic Detection of dust settling on surfaces.

- A 30-50v bias is applied across a grid of interlocking traces on a circuit board.
- Impinging conductive dust creates a short circuit and current pulse.
- Current pulse is input to nuclear counting electronics and converted to counts.
- Number of counts is proportional to mass of dust.
- Current also vaporizes or ejects dust from the circuit board restoring an open circuit.
- Device works in air or vacuum.

51Ω Single Channel Analyser

Grid with 25 micron spacing

Schematic

Rev.Sci.Instrum. 75 (2004) 370

NSTX results review, PPPL, September 15, 16, 2009

Electrostatic Dust Detector in action

Complex waveform converted into counts by standard nuclear counting electronics.

Waveform contains information on dust size

What it took to make this work on NSTX:

First detector (2004) worked well in air and vacuum 2004 detector Sensitivity in vacuum: ~70 μg/cm² = 54 counts However average dust level measured on NSTX (by weighing dust collected on slide) = 5.6 ng/cm²/discharge.

Large increase in sensitivity needed to measure NSTX dust (ITER not a problem).

Problems:

- Tried lower SCA threshold but noise increased also.
- Higher bias resistor but noise increased also.
- Lower bias voltage more counts but more permanent shorts.
- Electrical pick up on NSTX from SPAs and RF made identification of dust signals ambiguous.

Ingredients for success:

- 1. Increase grid area from 12 x 12 mm to 50 x 50 mm: x16 increase in sensitivity
- 2. Decrease grid spacing from 125 μ m to 25 μ m: x 30 increase in sensitivity
- 3. Remove low pass filter: x 50 x120 increase in sensitivity.
- 4. Installation of 'second blind' grid shielded from dust and sensitive only to pickup.
- 5. Differential detection electronics with high noise immunity (Bob Marsala).
- 6. Plus hard work by 6 summer undergraduate students.

Optimization in laboratory

Sensitivity increased 30x with finer grids

50 mm detector response linear down to $\approx 1 \mu g/cm^2$

Overall detection threshold reduced 50–120x without low pass RC filter

Small grid

^{&#}x27;07 points without RC filter '06 points with RC filter

Large grid

4,000 counts for 100 ng/cm2 !

Dual grid assembly

- Increase in sensitivity also increased pick up of electrical noise.
- Additional 'blind' detector implemented to assess contribution of electrical pickup (detector covered with mica to prevent dust settling).

Grid assembly ready for installation on Bay C bottom. Note mesh cover (125 µm pore size) to shield from fibers and large particles that could cause a permanent short. Dual grid system. Both grids in same electrical environment. Only top grid (#1) exposed to dust. Mica cover to shield bottom grid (#2).

Differential detection:

SPAs and RF are a powerful source of noise.

First detection circuit suffered from electrical noise pickup - - > .

First detection circuit

Differential circuit designed by Bob Marsala has high noise immunity.

NSTX results review, PPPL, September 15, 16, 2009

Detector signals from first day

Signal from lab dust source recorded by first electronics, input to 911 latching scalar. (12 mm grid, 25 μ m grid, air, 30 v) Note extended duration.

Example: Signals from NSTX 135143.

Note zero counts on Ch 2 'blind' detector.

More Signals from 135143

Signal on Channel 1 No pickup on 'blind' Channel 2 even with RWM coils

	800	·····	- Plasma Gun	rent (ka) · · · 13514	3	
	400: 400-		·····		·····	
	200	0,2	0(4	k	••••••••	· • · · • • • • • • • • • • • • • • • •
	6	······]	nn/Pin Bay	6 top 135143		
	4		W. I. [.]	· ·····	······	
	ê o	102W	0,4 🗸 🗸	0,6	0/8	1
VM	0.6		CII 6580A I	ay.C top 135143	l	
	0:4	· · · · · · · · · · · · · · · · · · ·	and and the Address of		·····	
	0 <u>0</u>		0:4	\ <u></u>	······································	
	-2		Inner Ga	p (cm) 135143		
. 7	-8	لمل كريستو	V			
I L	-900	/ 0.2	0.4	0,6	0,8	
	15		Outer Ga	p (cm) 135143		
	10	. المن ال				
-	00	0,2	0,4 Duct Dates	0,6 tox:Cb:1::::135143	0,8	1
)	0.8		Dust Doub			
	0.4		·····			
-	00	0,2	0,4 Dust Detec	0,6 tor Ch 2 : 135143		
I L						
	-1	·····			·····	·····
	2		Dust Detec	tor Ch 1 135143		····· ································
m		11				
T	0.5	• • • • • • • • • • • • • • • • • •		40		<u> </u>
	1		Dust Detec	tor Ch 2 135143		
	0.5					
	-0.5 0		20	4D		60
	60		ing integral of I	Dust Detector Ch	135143 · · · ·	······
	20					
	06		. 20			
	0.5	Runr	ing integral of l	Just Detector Ch :	2 135143	
	0.5					
	-1'' Q		20 BWM0	40 Toil 2 135143	:	60
	500	·····	-www	min	·····	
	0			ľ		
	-5000 5-55	U/Z minerika disease sere	0,4 HHFW.F	0.6 Powen :: 125142	0/8	
	-5e-9 11 1					
iew, PPP		0(8	0/4	0(0	0(0	

Last day of run with Li dropper

136150 XP# 955 PHYS OPS Aug 14 2009 11:37AM MUELLER Repeat with Li dropper (5V 45 mg 1.3s starts -970 ms Bay C only) No EFC or n=1 feedback.)K

136150 XP# 955 IMPURITIES Aug 14 2009 11:43AM spaul Steady rise of hollow Pad profile, but large reconnection events at .264 at .306 sec.

Summary:

Summary:

- FIRST real-time measurements of surface dust in ANY tokamak.
- Up to 100 counts without Li dropper,
- Up to 6589 counts with Li dropper. ٠
- Blind channel registers zero or • few counts.
- Time resolution ~ 10-20 s.
- Vibration can cause existing dust • to register counts.

Future work:

- Lab calibration of ng/cm²/ count with new electronics.
- He puffer to remove dust.
- 3-phase grid to demonstrate dust • removal.
- Rugged radiation resistant version for ITER.

Total dust counts per shot July, Aug

10000

