XP 938 Dust mobilization from ITER-scale castellations

Charles H. Skinner¹, Stephan Gerhardt¹, Ricky Maqueda², Dennis Mueller¹, Roger Raman³, Lane Roquemore¹

¹PPPL ²Nova Photonics ³Univ. Washington

Motivation:

- Dust on ITER will fall down the gaps between tile castellations.
- The question is whether it is then permanently 'buried' or could be mobilized by a disruption.
- If the latter it needs to be included in safety assessments of the dust inventory and could contaminate the succeeding plasmas.

Plan:

- Make up a castellation mockup with gaps that are the same dimensions as the ITER castellations. Fabricate probe from boron nitride (an insulator) to avoid issues with induced JXB forces.
- Load it with 'dust' (carbon particles scraped from ATJ tile) and mount it on the Bay J sample probe assembly.
- Insert it and land some disruptions close by.
- Weigh and photograph before and after to assess how much dust is lost.
- XP938 was run with carbon dust for 3 shots
 on 14 August.
 NSTX results review, PPPL, September 15, 16, 2009

Top of sample probe with 0.5 mm wide gaps in 'castellations' of 8 mm depth (as in tungsten PFCs in ITER).

Potential dust locations in ITER

Dust typically accumulates at the bottom of a tokamak (TFTR diagnostic pipes, JET subdivertor...).

- Gaps between blanket modules
- Gaps between tile castellations
- Under divertor dome
- Under divertor cassette
 - Could be carbon, tungsten, beryllium or mixed materials.
 - 'Dust' is defined as particles < 100 μ m (larger particles will not transport to the environment in accident scenarios).
 - Typical count median diameter in present tokamaks is few microns.
 - Fractal-nanoscale particles reported in ELM simulators.

Macrobrush

NSTX results review, PPPL, September 15, 16, 2009

Illustration only

Operators Log:

136153 XP# 938 PHYS OPS Aug 14 2009 04:26PM MUELLER 900 kA LSN with shift down at 250ms to make disruption - disrupted too late and in wrong direction

136154 XP# 938 PHYS OPS Aug 14 2009 04:27PM MUELLER again with big DRSEP (-20) and Z axis shift (-20) - Ramped down

136155 XP# 938 PHYS OPS Aug 14 2009 04:27PM MUELLER Take PF3L out of isoflux control and request opposite sign current at 250ms Finally a good fast disruption

136155 Disruption:

\EFIT02::WMHD/1000.

NSTX results review, PPPL, September 15, 16, 2009

136155 Disruption:

nstx_1_136155.cin

Castellation Probe 2" above surrounding tiles

em 722.872 fo nio.231321_f_xten/2002/...

/p/nstxcam/Phantom 71-5040/20009
nstx-1-136155.cin at 278.337 ms
viewed from Bay B midplane NS

Phantom71-5040_250.0_r

NSTX results review, PPPL, September 15, 16, 2009

No IR data this shot unfortunately

Castellation probe loaded with dust

NSTX results review, PPPL, September 15, 16, 2009

Castellation probe after disruption

- Fortafix 'plug' blown out of one gap.
- Significant particle loss from damaged areas
- Modest loss (~ 0.5 mm depth) from undamaged gaps.
- Evidence of strong heating on leading edge of probe -> (protruded 2" above surrounding tiles)

NSTX results review, PPPL, September 15, 16, 2009

Mass Loss Results:

Probe + dust before exposure	200.4512 g
Probe + dust after exposure	200.3044 g
Initial weight of dust	0.140 g (after correction for lost fortafix & chips)
Final weight of dust	0.123 g
Dust mobilized	0.016 g or 12%

Conclusions:

- Some dust in castellation gaps is mobilizable.
- For one NSTX disruption, dust is lost from a gap depth is similar to gap width.
- Dust at ends of gaps or surface imperfections is much more mobilizable.