

XP 923 - thermal transport in the SOL (FY10 Joint Research Target)

College W\&M
Colorado Sch Mines
Columbia U
CompX
General Atomics
INEL
Johns Hopkins U
LANL
LLNL
Lodestar
MIT
Nova Photonics
New York U
OId Dominion U
ORNL
PPPL
PSI
Princeton U
Purdue U
SNL
Think Tank, Inc.
UC Davis
UC Irvine
UCLA
UCSD
U Colorado
U IIlinois
U Maryland
U Rochester
U Washington
U Wisconsin

 J.A. Surany (Princeton Univ.)

Culham Sci Ctr U St. Andrews York U

XP923: SOL thermal transport (target heat flux and radiation profiles, turbulence characteristics)

- Run early in year pre-Li
- Obtained slow IR, fast IR (low δ), D_{α} cameras, GPI
- New divertor bolometer channels unavailable
- Obtained a nice I_{p} scan and $P_{\text {NBI }}$ scan at low $\delta_{\text {bot }} \sim 0.4$
- ELMs change
- SOL heat flux width clearly contracts with I_{p}

XP923: SOL thermal transport (target heat flux and radiation profiles, turbulence characteristics)

- Run early in year pre-Li
- Obtained slow IR, fast IR (low δ), D_{α} cameras, GPI
- New divertor bolometer channels unavailable
- Obtained a nice I_{p} scan and $P_{\text {NBI }}$ scan at low $\delta_{\text {bot }} \sim 0.4$
- ELMs change
- SOL heat flux width clearly contracts with I_{p}
- Obtained small I_{p} and $\mathrm{P}_{\mathrm{NBI}}$ scan at high $\delta_{\text {bot }} \sim 0.7$
- Slow IR data confusing
- No fast IR data
- To do: analyze fast IR, turbulence, D_{α} data

XP814: Peak heat flux (width) varies directly (inversely) with plasma current at high δ

- $\lambda_{q}{ }^{\text {mid }}$ dependence on I_{p} seems to connect to the low δ data from XP 923 smoothly(!)
- $\lambda_{\mathrm{q}}{ }^{\text {mid }}$ down to 2 mm observed in these conditions, with $q_{\|}$ up to $300 \mathrm{MW} / \mathrm{m}^{2}$
\checkmark Peak heat flux and detachment reported at IAEA 2008 in Soukhanovskii's paper (NF 2009)

XP816: Peak heat flux (width) varies inversely (directly) with flux expansion

- $\lambda_{q}{ }^{\text {mid }}$ stays approximately constant during the scan
- Large variability - need to refine analysis to see if error bars can be reduced
\checkmark Partly reported at EPS 2009 in Vlad's paper

