

#### Supported by



#### XP 923 – thermal transport in the SOL (FY10 Joint Research Target)

College W&M Colorado Sch Mines Columbia U CompX **General Atomics** 

INEL

**Johns Hopkins U** 

LANL

LLNL

Lodestar

MIT

**Nova Photonics** 

New York U

**Old Dominion U** 

ORNL

PPPL

PSI

Princeton U

Purdue U

SNL

Think Tank, Inc.

**UC Davis** 

**UC Irvine** 

**UCLA** 

**UCSD** 

**U** Colorado

**U Illinois** 

**U** Maryland

**U** Rochester

**U Washington** 

**U Wisconsin** 

J.A. Surany (Princeton Univ.)

> **NSTX Results Review** Princeton, NJ Sept. 15-16, 2009





Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U **NIFS** Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST **POSTECH ASIPP** ENEA, Frascati CEA, Cadarache IPP. Jülich IPP, Garching ASCR, Czech Rep **U** Quebec

#### XP923: SOL thermal transport (target heat flux and radiation profiles, turbulence characteristics)



- Run early in year pre-Li
  - Obtained slow IR, fast IR (low  $\delta$ ), D<sub>a</sub> cameras, GPI
  - New divertor bolometer
- Obtained a nice  $I_p$  scan and  $\frac{2}{3}$  and at low  $\delta_{bot} \sim 0.4$ 
  - ELMs change
  - SOL heat flux width clearly contracts with I<sub>n</sub>



### XP923: SOL thermal transport (target heat flux and radiation profiles, turbulence characteristics)



- Run early in year pre-Li
  - Obtained slow IR, fast IR (low  $\delta$ ),  $D_{\alpha}$  cameras, GPI
  - New divertor bolometer channels unavailable
- Obtained a nice  $I_p$  scan and  $P_{NBI}$  scan at low  $\delta_{bot}$ ~ 0.4
  - ELMs change
  - SOL heat flux width clearly contracts with I<sub>p</sub>
- Obtained small Ip and PNBI scan at high  $\delta_{bot}{\sim}~0.7$ 
  - Slow IR data confusing
  - No fast IR data
- To do: analyze fast IR, turbulence, D<sub>α</sub> data



# XP814: Peak heat flux (width) varies directly (inversely) with plasma current at high $\delta$



- $\lambda_q^{\text{mid}}$  dependence on  $I_p$  seems to connect to the low  $\delta$  data from XP 923 smoothly(!)
  - $\lambda_q^{mid}$  down to 2mm observed in these conditions, with  $q_{\parallel}$  up to 300 MW/m<sup>2</sup>
- ✓ Peak heat flux and detachment reported at IAEA 2008 in Soukhanovskii's paper (NF 2009)



# XP816: Peak heat flux (width) varies inversely (directly) with flux expansion



- λ<sub>q</sub><sup>mid</sup> stays approximately constant during the scan
- Large variability need to refine analysis to see if error bars can be reduced
- ✓ Partly reported at EPS 2009 in Vlad's paper



