

XP 956 – SOL and divertor transport studies with reversed TF

Supported by

College W&M Colorado Sch Mines Columbia U CompX **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U Old Dominion U ORNL PPPL PSI Princeton U Purdue U SNL Think Tank, Inc. UC Davis **UC** Irvine UCLA UCSD **U** Colorado **U** Illinois **U** Maryland **U** Rochester **U** Washington **U** Wisconsin

V. A. Soukhanovskii, LLNL

Acknowledgements: NSTX Research Team

NSTX Results and Theory Review Princeton, NJ 15 September 2009

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI KAIST** POSTECH ASIPP ENEA. Frascati CEA, Cadarache IPP, Jülich IPP, Garching ASCR, Czech Rep **U** Quebec

Office of

U.S. DEPARTMENT OF

ENERGY Science

A successful reversed TF campaign has been run

- Configuration:
 - TF was 4.5 kG
 - Forward *B_t* direction: CW from above, B x grad B toward lower X-pt
 - Forward I_p direction CCW from above (co-dir. w/ NBI)
 - Reversed B_t direction: CCW from above, B x grad B away from lower X-pt
- XP 956 provided initial results on
 - NSTX machine performance with reversed TF
 - data to motivate future reversed TF and possibly reversed I_p exp'ts
 - data to compare to large aspect ratio tokamaks (e.g., DIII-D, JET, AUG, JT-60U)

Summary

- Obtained SOL / divertor database in low δ configuration with lithium at several I_p and P_{NBI}
 - \checkmark Observed decreased heat and particle flux asymmetries
 - ✓ Studied divertor detachment no OSP detachment at gas puffing rate 200-350 Torr I / s (also, due to lithium pumping?). At highest rate, barely saw some signs of recombination in inner divertor
 - Need 2D fluid code modeling to understand magnitude of reversed drifts
- Obtained SOL / divertor database in high δ configuration with lithium
 - ✓ Obtained divertor heat / particle fluxes at P_{NBI} =1-6 MW
 - Studied divertor detachment apparently obtained OSP partial detachment
 - ✓ Observed high degree of OSP splitting

Data analysis of radiative divertor database at reversed TF is in progress

4 of 17

Ξ

05

NSTX edge diagnostics set is (well?) suited for the proposed SOL and divertor studies with reversed B_t

- Diagnostic set for divertor studies:
 - IR cameras
 - Bolometers
 - Neutral pressure gauges
 - Tile Langmuir probes
 - $D\alpha$, $D\gamma$ filtered CCD arrays
 - UV-VIS spectrometer (10 divertor chords) – C II, CIII, Balmer, He profiles
 - Fast cameras
- Midplane Thomson scattering and CHERS systems

Lawrence Livermore National Laboratory

• Divertor gas injector Γ_{gas} = 20-200 Torr I / s

om

UNIVERSITY of

Supported by

Office of Science

XP 912 – Comparison of H-mode fueling with supersonic gas injector and conventional gas injector

College W&M **Colorado Sch Mines** Columbia U CompX **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics New York U Old Dominion U ORNL PPPL PSI Princeton U Purdue U SNL Think Tank, Inc. UC Davis **UC** Irvine UCLA UCSD **U** Colorado **U** Illinois **U** Maryland **U** Rochester **U** Washington **U** Wisconsin

V. A. Soukhanovskii, LLNL

Acknowledgements: R. Raman (U.Washington), R. Bell, R. Kaita, H. W. Kugel, B. LeBlanc, J. E. Menard, D. Mueller, A. L. Roquemore, R. Maingi (ORNL) and the NSTX Research Team

NSTX Results and Theory Review

Princeton, NJ 15 September 2009

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kvoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI KAIST** POSTECH ASIPP ENEA. Frascati CEA, Cadarache **IPP. Jülich** IPP, Garching ASCR, Czech Rep **U** Quebec

Motivation and Summary of XP 912

- Goals
 - develop H-mode fueling scenarios with SGI fueling and lithium pumping
 - study SOL, divertor and pedestal during supersonic gas jet fueling for further SGI optimization
 - compare with conventional gas fueling
- Results
 - Comparison of conventional LFS gas fueling at 80, 120 and 200 Torr I /s and LFS SGI fueling showed that x 1.3-2 higher rate needed for conventional gas to maintain same density (and inventory)
 - Developed 0-HFS fueling scenario for H-mode with lithium (very robust) and used in several other XPs
 - With lithium pumping, apparently higher divertor density threshold for Xpoint MARFE formation – thus, SGI and lithium work very well

Supersonic gas injector is a complex computercontrolled high gas pressure apparatus

Supersonic gas injector consists of Laval nozzle and piezoelectric valve

- SGI-U is operated at flow rates 50-250 Torr I /s (3.5 – 17.5 x 10²¹ s⁻¹)
- Supersonic deuterium jet properties:
 - Jet divergence half-angle:
 6° 25° (measured)
 - Mach number M = 4 (measured)
 - Estimated: T ~ 60 160 K, *n* < 5 x 10²³ m⁻³,
 - v_{flow} = 2.4 km/s, v_{therm} ~ 1.1 km/s
 - Nozzle *Re* = 6000

SGI fueling results in higher fueling efficiency, lower edge neutral pressure

Comparison between **SGI** and **conv. gas injection** was only possible by 1) matching density in 1 MA, 6-4 MW discharges; 2) comparing gas injection rate and total gas inventory

SGI-only fueling scenario with steady-state ion inventory developed

- Obtained good n_e and T_e profiles (at outer gap ~ 10 cm) to compare SGI and LFS fueling
 - Will analyze pedestal height and width in collaboration with ORNL
- Developed shoulder and SGI long pulse fueling scenarios
- Developed SGI-only fueling scenario with ion density control
 - N_i constant, while N_e is rising due to carbon; LITER at 9 mg/min

Supported by

Office of

UNIVERSITY of VASHINGTON

XP 924 – "Snowflake" divertor in NSTX

College W&M **Colorado Sch Mines** Columbia U CompX **General Atomics** INEL Johns Hopkins U LANL I I NI Lodestar MIT Nova Photonics New York U Old Dominion U ORNL PPPL PSI Princeton U Purdue U SNL Think Tank, Inc. UC Davis **UC** Irvine UCLA UCSD **U** Colorado **U** Illinois **U** Maryland **U** Rochester **U** Washington **U** Wisconsin

V. A. Soukhanovskii, LLNL

Acknowledgements: E. Kolemen, D. Gates, R. Bell, S. Gerhardt, R. Kaita, H. W. Kugel, B. LeBlanc, J. E. Menard, A. L. Roguemore (PPPL), J.-W. Ahn, A. McLean, R. Maingi (ORNL), R. Magueda (Nova Photonics), R. Raman (U.Washington), and the NSTX Research

NSTX Results and Theory Review

Princeton, NJ 15 September 2009

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kvoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI KAIST** POSTECH ASIPP ENEA. Frascati CEA, Cadarache **IPP. Jülich** IPP, Garching ASCR, Czech Rep **U** Quebec

"Snowflake" divertor configuration: theory predicts many edge physics benefits

- "Snowflake" divertor (SFD) configuration proposed and theoretically studied by D. D. Ryutov (LLNL) (Phys. Plasmas 14, 064502 (2007); Phys. Plasmas, **15, 092501 (2008),** paper IC/P4-8 at IAEA FEC 2008)
- SFD obtained by creating a second-order poloidal null
- Two cases SFD-plus and SFD-minus
- Predicted properties
 - Large flux expansion (*B_p/B* small)
 - Divertor peak heat flux reduction
 - SOL flux tube squeezing barrier for turbulence
 - Possibility of ELM control (different magn. shear)
 - Enhanced X-point ion loss (?)

awrence Livermore

SFD-plus and SFD-minus

ISOLVER code was used to study configuration trends vs divertor coil currents

• ISOLVER - predictive freeboundary axisymmetric equilibrium solver (J. E. Menard)

- ☑ normalized pressure and current profiles and boundary shape as input
- \square matches a specified plasma current and β,
- ☑ computes coil currents as output

V. A. Soukhanovskii, NSTX Results Review, Princeton, NJ, 16 September 2009

14 of 17

XP 924 demonstrated steady-state "snowflake" divertor configurations

Only got ½ run day

Lawrence Livermore National Laboratory

- Used PCS strike point (SP) control on both inner and outer SPs
- Scanned OSP between 0.44 to 0.69 m
- Best SFD was obtained with R_{OSP} ~ 0.55 m

SFD has highest flux expansion at strike point and longest connection length

Configuration	Flux expansion	<i>L_x</i> (m)	L _{tot} (m)
SFD	68.1	16.3	36.5
Low δ	4.3	8.4	19.6
High δ	10.0	4.5	15.0

Divertor data analysis of "snowflake" configurations is in progress...

