NSTX Results/Theory Review, Sept. 15-16, 2009

Particle Simulation of Neoclassical Li⁺³ Transport in Realistic Geometry NSTX

C.S. Chang Simulation performed by Gunyoung Park Courant Institute, NYU

XGC0: Kinetic transport modeling code

- Full-f Particle-in-cell in 3D magnetic field (RMP, ripple)
- Realistic geometry from geqdsk data (wall and separatrix included)
- 3D (in r-space) + 2D (in v-space) ion and electron Lagrangian dynamics with self-consistent 1D E_r evolution
- Electrostatic potential Φ is assumed to be a flux function
- Logical sheath at diverter plates (J_{\perp} + J_{\parallel} =0 out of a flux tube)
- D/H Neutral Monte Carlo particles with a wall recycling coefficient
- Conserving Monte-Carlo Coulomb and neutral collisions (ionization and charge exchange)
- DEGAS2 is built-in (Stotler)
- Multiple ion species with Hirshman collision operator
- Heat flux from core
- Implementation of anomalous transport modeling: random walk and convection. Independent control of the ambipolar particle and the heat transport on each species
- More self-consistent anomalous transport is to be imported from XGC1.
- XGC-RF contains rf operator

Kinetic neoclassical impurity transport simulation

- Anomalous transport is off \rightarrow Neoclassical
- Simulation domain: ψ_N =0.4 to wall in realistic g_eqdsk geometry (g124439.00497)
- No ripple and RMP
- 5 species: $D^{+1},\,e^{\scriptscriptstyle -}$, $D^0,\,C^{+6},\,Li^{+3}$
- C⁺⁶ and Li⁺³ are born at fixed fraction to n_e .
- Large initial C density fraction (5% and 10%) and small Li fraction (1/3%)
- Radial transport speeds are calculated from assumed initial profile
- Instead of using DEGAS2, a built-in simplified neutral Monte Carlo model is used for this simulation.
- Self-consistent E_r - v_{\parallel} with the impurity and edge effects (wall, X-point, neutral, pedestal, etc)

Analytic theories are not easy for C and Li impurities

- Large mass ratio and/or high Z approximations are problematic.
- Orbit loss effects (X-loss) on E_r, rotation and transport are difficult to handle analytically

N_e(r,t) in the simulation

Electron density profiles

T_i(r,t) in the simulation

At 5% n_c/n_e, Li moves inward at much slower speed than C.

At $n_c/n_e=10\%$, Li even moves outward.

Impurities affect the E_r -well depth. E_r -well depth at n_C/n_e =10% is weaker than that at 5% (m^{-1/2} vs Z⁻¹ in X-loss)

Physics with conclusion

- 5 species full-f neoclassical particle simulation in XGC0:
 D⁺¹, e⁻ , D⁰, C⁺⁶, Li⁺³
- Realistic NSTX geometry with separatrix and wall, and heat flux from core
- Neoclassical impurity transport is from momentum exchange between the ion species
- E_r also affects impurity transport (←edge effects)
- For C⁺⁶, D⁺¹ is the dominant background species
- For Li⁺³, C⁺⁶ is the dominant background species
- C⁺⁶ moves in while D⁺¹ moves out.
- Li⁺³ moves out relative to $V_r(C^{+6})$.
- As C⁺⁶ concentration increases, V_r(Li⁺³) becomes positive
- More detailed experimental comparison to be performed