Dynamic surface chemistry effects on lithium-coated graphite surfaces from deuterium irradiation

J.P. Allain^{1,2,3}, C.N. Taylor¹, B. Heim¹, L. Kollar¹

PPPL Collaborators: C.H. Skinner, H.W. Kugel, R. Kaita, A.L. Roquemore

¹Purdue University, West Lafayette, IN ¹School of Nuclear Engineering ²School of Materials Engineering ³Birck Nanotechnology Center, Discovery Park, Purdue University

> NSTX Results/Theory Review, Wednesday, 16 September, 2009

RSSEL

PURDUE ENGINEERING

PURDUE

RSSEL

PURDUE ENGINEERING

RSSEL

RSSEL

PURDUE ENGINEERING

10

PURDUE

Results – Post mortem NSTX FY08 tiles

Summary of controlled in-situ XPS studies

- Oxygen
 - <u>Li and O</u> interactions, on a graphite substrate, are manifest at <u>529.5</u>
 <u>eV</u> in the XPS spectrum. Peak diminishes with larger D fluence.
 - <u>Li, O, and D</u> interactions, on a graphite substrate, are manifest at <u>533 eV</u>. Peak dominates with larger D fluence.
- Carbon
 - <u>Li, D, and C</u> interactions are manifest at <u>291 eV</u>. Relative peak energy increases with increased D fluence. Changes cease to occur at a yet to be discovered D fluence threshold.
- Post-mortem tiles
 - Treatment (Ar sputtering and heating) changes passivated, broad, inconsistent peaks to align with consistently produced peaks found in controlled experiments.
 - "Broad" peaks consistent with a highly porous and amorphous carbonaceous layer (in time-integrated PFR region)

Mechanisms for D retention in lithiated ATJ graphite surfaces

- Structural diversity in carbon leads to a number of "functionalities" or "preferred interactions" between hydrogen and Li in a carbon matrix
- Literature in the Li-C-H system is consistent with our observations
- Disorder in the carbon matrix can leave a large number of C valences unsaturated as dangling bonds
- H (or D) can also bind in the vicinity of Li atoms
- Electronic transfer from Li to C atoms can induce dipole interactions with H
- More Li, more H interaction and effectively higher retention

RSSEL

¹J.R. Dahn et al. Science 270, October 1995, 590 ²W.Q. Deng et al. Phys. Rev. Lett. 92, 2004, 166103 ³J.H. Cho et al. Catalysis Today, 120, 2007, 407

Lithium doping in nano-structured carbon surfaces using DFT and QMD modeling^{2,3}

NSTX PMI Probe

Sample Probe aims to address: "fundamental processes governing particle balance...using lithium surfaces in the divertor..." (Joule milestone language)

FY'09 Thermal Desorption Spectroscopy ex-vessel, promptly after plasma exposure (no air exposure).

PURDUE

PMI Probe experiments (XP911) – Summary No lithium conditioning

6 Neutral Beam Plasmas – 3 Apr 09

- ATJ132 TDS at NSTX
- ATJ133 TDS at Purdue
- Pd425 XPS
- Si105

8 Ohmic Heated Plasmas – 6 Apr 09

- ATJ134 TDS at NSTX
- ATJ135 TDS at Purdue
- Rh sample
- Si112

With lithium conditioning

6 Neutral Beam Plasmas – 24 Apr 09 8 Ohmic Heated Plas

- ATJ138 TDS at NSTX
- ATJ139 TDS at Purdue
- Pd431 XPS
- Si109

- 8 Ohmic Heated Plasmas 22 Apr 09
 - ATJ136 TDS at Purdue
 - ATJ137 TDS at Purdue
 - Pd422 XPS
 - Si108

ATJ133 – Exposed to NB Plasma

ATJ139 – Exposed to NB Plasma

Comparisons of Ion Beam data with XPS

Lithium dependence on surface chemistry

RSSEL

20

AJT139 vs. post-mortem tile near LITER

NSTX Tile A235-021-2

Staged Ar cleaning

<u>ATJ139</u>

- <u>Lithium</u> conditioning
- 6 NSTX NB plasma shots
- Ar cleaning
- TDS performed at Purdue

Lithium dose affects Li-D-O-C functionality

Li-30nm post deposition, post D irradiation

Li-2000 nm post deposition, post D irradiation

> PURDUE ENGINEERING

TDS of NSTX PMI probe exposed samples

- deuterium atoms in lithiated graphite matrix
- Strong correlation between dose of lithium coatings and dynamic retention of deuterium
- We have identified a weakly-bonded state for deuterium atoms, similar to bond strengths for D atoms in solution with pure Li, except mechanism for binding is quite different due to presence of graphite matrix

PURDUE

PMI Probe sample examination

- April 22
 - Shots 132973-133018
 - XP911 occupied 8 Ohmic plasma shots
 - Assume Li coverage: 25% of 40m² area in vessel
 - In 8 shots, 343 mg deposited (64 nm)
- SEM of Si sample shows < 500-nm film
- Pd425

RSSE

- No Li conditioning
- Exposed to 6 NB plasmas
- Post analysis 4-point probe showed a D concentration of ~5.16 x 10²⁰ m⁻²
- Pd sample was heated beyond 200 C emitting implanted D
- Langmuir probes showed average deuterium flux of: ~3.34 x 10²² m⁻²

Fig. 1 Sample probe with ATJ graphite, Si and Pd samples

Probe experiments: round 2 – Piggyback

RSSEL

25

PURDUE

Implications for LITER and LLD operation

- Controlled *in-situ* surface analysis of lithiated ATJ graphite surfaces show:
 - initially Li readily intercalates
 - Over time with large lithium dose (and with D) a diffusion barrier is created slowing intercalation to bulk
 - D irradiation and oxidation can also drive Li to surface
- It is obvious that "the more lithium the better"
 - Our work shows mechanism for D retention dependent on charge transfer mechanisms in Li:C:D and also on carbon structure (morphology)
 - Spreading more lithium on carbonaceous surfaces with thicknesses of at least 400-500 nm show signs of D retention (LLD will help with this)

Acknowledgements

D. Zemlyanov, Birck Nanotechnology Center

S.S. Harilal, Purdue University

M. Nieto, M.R. Hendricks, V. Titov, P. Plotkin

J.N. Brooks, Purdue University

C. Skinner, H. Kugel, R. Majeski, R. Kaita *Princeton Plasma Physics Laboratory*

•Purdue work under US-DOE Contract DE-FG02-08ER54990

TDS – Deuterium retention

RSSEL

Retention for lithiated samples is ~3 orders of magnitude greater for lithiated samples

Surface morphology of ATJ graphite surfaces Low magnification

NSTX post mortem tile

Tile A408-002-C5 Removed after FY08 campaign

Si probe sample

Si108 Exposed to 8 NSTX Ohmic plasmas via sample probe

High magnification

Control graphite sample

RSSEL

ATJ147a 2000 nm Li deposited, 1.5 hr D irradiation

PURDUE ENGINEERING