

Supported by

Office of FNERGY Science

Observations from XP-950: Dependence of metallic impurity accumulation on I_p and the outer gap in the presence of lithium deposition College W&M

Colorado Sch Mines Columbia U CompX **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL PPPL PSI **Princeton U** Purdue U SNL Think Tank, Inc. UC Davis **UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Washington **U Wisconsin**

S. P. Gerhardt and S. F. Paul Summary of results

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U **NIFS** Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache **IPP. Jülich IPP, Garching** ASCR, Czech Rep **U** Quebec

Motivation and design of experiment

- Li-conditioned ELM-free scenarios are known to suffer from massive radiated power if they achieve long pulse.
- Unverified subjective opinions about whether fast ion loses contribute in a major way
- If so, hypothesize that a large outer gap (thin gas blanket) or high I_p (better fast ion confinement) or beam source geometry might limit the impurity accumulation.
 - Test this hypothesis with systematic scans.
 - Try, if possible, to diagnose the difference impurities, impurity sources, and provide operations/infrastructure guidance.
- Scanned I_p, outer gap, and source mix
 - Two shots for I_p scan 1) [I_p =700 kA, B_T = 0.45 T] and 2) [I_p =1200 kA, B_T = 0.5 T].
 - For I_P =700kA, did gap scan @[5,10,15,20] cm, for I_P =1.2MA , scanned [10,15, 20] cm.
 - For each case, varied source geometry, switching between sources A+B and A+C.
 - Left the early beams, early shape, current ramp rate alone.
 - Did 2 shots with all fixed except for LFS puffing during the flat top.
- Not always fully ELM-free
 - We thought that bay-K LITER was on the verge of running out, and so rationed the usage.
 - Ended the day with negative Li in Bay-K LITER.
- Follow-up 2 hour run to inject beam fast ions earlier in shot @ low I_p stage.

Metrics and Diagnostics Used So Far

- Particle inventories from CHERS, MPTS & EFIT02: $N_{\rm D},\,N_{e},\,$ and $N_{\rm C}$
- Carbon dilution: $6N_C/N_D$
- Bolometry: P_{rad} and P_{rad}/N_e , profiles of power density.
- SPRED:
 - Spectrum vs λ at fixed time, normalized by the line density (1/cm²)
 - Caveat that Fe XV (284 A), FeXVI (335, 361 A) have relatively low ionization potentials (100s of eV).
 - Metal "hump" vs time: median filter spectrum to remove discreet lines, sum all pixels with $200 < \lambda < 400$, normalize by the line density.
- Bremsstrahlung Z_{eff} estimation
- Z_{eff} profiles from CHERS, assuming C only.

Need to try to recover some LowEUS, XEUS data if possible

Shot List with comments

1200kA Cases have BT=0.5 T						
700kA Cas	es have BT	=0.45 T				
IFT Gas= LFS Fueling Rate During the Flat Top (TL/s)						
= Shots with A+B						
= Shots that are not useful						
				Li		
shot	Ip	Outer Gap	Sources	Evaporated	FT Gas	Comment
134256	700	10	A+B	247	0	
134257	700	10	A+B	251	0	
134258	700	10	A+C	206	0	
134259	700	15	A+C	195	0	
134260	700	15	A+B	208	0	No CHERS, so repeat
134261	700	15	A+B	186	0	No CHERS
134262	700	20	A+B	192	0	
134263	700	20	A+C	204	0	
134264	700	5	C Only	203	0	Source C Only
134265	700	4	A+C	202	0	
134266	700	5	A+B	202	0	
134267	1200	15	A+B	202	0	
134268	1200	15	A+C	202	0	
134269	1200	10	A+C	200	0	
134270	1200	10	A+B	202	0	
134271	1200	20	A Only	202	0	Source A Only
134272	1200	20	A+B	202	0	
134273	1200	20	A+C	202	0	Disrupts During Ramp
134274	1200	20	A+C	202	0	
134275				202	0	No Fields
134276	700	15	A+C	202	20	
134277	700	15	A+C	202	40	Reduced Prad, probably because ELMs come back
134278	700	15	A+C	202	0, then 20	L

Plasma shapes used for scanning the outer gap

XP-950 Observations

At I_P=1200 kA, B_T=0.5T, SPRED Shows that Accumulation of Metals is Arrested, Regardless of Outer Gap

- SPRED spectra essentially overlap.
- Time evolution shows no ramp of metals accumulation.
 - Caveat: Fe XV and XVI lines observed by SPRED have ionization potentials of only about 500 eV; indicative of region with T_e around 100-200 eV.

XP-950 Observations

At I_P=1200 kA, B_T=0.5T, P_{rad}/electron Rises Slowly & is Independent of Outer Gap, Carbon Dilution Uncorrelated With Gap

- Carbon dilution is present, though not well correlated with the outer gap.
 - Typically 50% of electrons from C at the end of these shots.
- P_{rad} ramps.
- Z_{eff,VB} is independent of the outer gap.
- P_{rad}/N_e ramps very slowly

XP-950 Observations

At I_P=700 kA, B_T=0.45T, SPRED Shows that the Accumulation of Metals Occurs, Regardless of Outer Gap

- Iron lines are prominent in the SPRED spectrum at I_P=700 kA.
- Normalized SPRED metals ramp strongly through the shot

XP-950 Observations

At I_P=700 kA, B_T=0.45T, P_{rad}/electron Rises More Rapidly, Carbon Dilution Becomes Severe at Large Outer Gap

- Carbon dilution is severe when outer gap is 15 or 20 cm
- Radiated power per electron:
 - Is larger for small outer gap, though the trend is not strong
 - Ramps strongly throughout the shot

XP-950 Observations

NSTX

XP-950 Observations

The CHERS and VB Z_{eff} May Have Some Inconsistencies

- Large I_P case has flat Z_{eff,C} profiles, at about 3.5.
- The chord average effective charge is Z_{eff,VB}=2.8
- For a flat profile of Z_{eff,C}, how can the Z_{eff} measured by bremsstrahlung be less than that assuming carbon only?
 - If this is a profile effect, then it implies that $Z_{eff,VB}$ should not be used as a metric for comparison.

Follow-on run to examine effect of beam timing

•Both at the beginning of the discharge (.3 seconds through the end (1.05 sec) the SPRED spectra virtually overlay

• Very little effect was seen when beam timing was varied

•Conclusions: I_p makes the largest difference by far – but little evidence that operating the beams differently and different beam orbits are directly responsible

•The main tools for limiting impurities (especially with Li operation) is high plasma current and masking steel surfaces with low-Z materials.

