XP 951: Monte Carlo Calculations of Li Diffusion in He

D. P. Stotler, C. H. Skinner, L. E. Zakharov, PPPL P. S. Krstic, ORNL

- Motivation & background: see Skinner's talk.
- Zakharov's LiTER calculations assumed straight line Li atom trajectories: Li mfp >> R.
 - But, coverage limited to bottom surfaces,
 - Significant shadowing.
- Opposite (diffusive) limit: Li mfp << R,
 - Not much harder to estimate.
 - But, coverage strongly peaked on upper surfaces.
- Optimal pressure(s) likely in between,
 - I.e., each Li has a few He collisions before hitting a surface.
 - \Rightarrow Need fully kinetic (Monte Carlo) calculation.

Simulate Li Flux to NSTX Tile Surfaces using DEGAS 2

- 3-D representation of NSTX vacuum vessel,
 - Including passive plates, divertor plates, gaps, QMB's, etc.
- Vessel uniformly filled with He at specified pressure.
- Only physical process is Li + He elastic scattering,
 - Li atoms assumed to stick upon striking a surface.
- Two LiTER sources,
 - Source velocity distribution from Zakharov.
- Accumulate: flux to each surface vs. toroidal angle,
 - Repeat for range of pressures.

Li Density Contours at 0.032 mtorr

Magnitude of Fluxes & Toroidal Uniformity Vary with Pressure

- Both LiTERs operating at 10 mg/min each.
- Higher pressure plots resemble 0.2 mtorr case, but with greater range of fluxes.

Summarize Runs to Identify Best Pressures for Each Surface

Optimize Prescription via Linear Combination of Runs

- Use 3 He pressures for simplicity,
- Goal: obtain some minimum coverage everywhere,
 - Avoid excessive peaks & valleys.
 - No algorithm; just eyeballing!
- Portion of CS partially shadowed because LiTER's 130 degrees apart.
- This is essentially prescription used in XP 951.

1 @ 0.032 mtorr / 2 @ 0.1 mtorr / 2 @ 0.2 mtorr

Lithium Flux(m⁻² s⁻¹)

Future Work

- Better spatial calibrations for critical components,
 - LiTER location, tile edges around QMB.
 - Underway / just completed.
- Account for D₂ outgassing & scattering,
 - Incremental D_2 pressure was ~20 40% in these experiments.
 - Li + D_2 cross section probably similar.
- Design XP to validate / calibrate this procedure,
 - Need poloidally varying QMB data for validation,
 - Likely to uncover shortcomings.
 - Can use pressure trends to calibrate & improve model,
 - E.g., Li + He cross section.

