
The vacuum Green’s Function

valid for high toroidal mode number in tokamaks

New PEST results for NSTX
∗

– M. S. Chance and J. Manickam, (PPPL)

NSTX Results/Theory Review
Macroscopic Stability TSG
PPPL, Princeton, NJ, USA

September 15 – 16, 2009

∗Work supported by U.S. Department of Energy Contract Nos. DE-AC02-76-CH03073 and DE-AC03-99ER54463.



– The vacuum Green’s Function valid for high n. NSTX applications ....– PPPL, Princeton, NJ Sept. 15 – 16, 2009 2

Introduction: Motivation

• The previous evaluation of the Green’s function in the vacuum code relies on an upward

recursion relation in n, initiated from the complete elliptic integrals of the first and second

kinds.

Gn+1 =
4n(2ρ̂2 + 1)

(2n + 1)
Gn − 2n − 1

2n + 1
Gn−1, (1)

for n = 1, 2, . . ..

• Significant loss of digits occurs when studying moderately high n mhd modes. A few recur-

sions in n can quickly lead to a complete loss of accuracy even when the seed elliptic integrals

from [1] are replaced with the much more accurate recursive method of Bulirsch[4, 2].

• These inaccuracies have affected recent pest applications on nstx. The replacement of a

more accurate calculation of G[3] has resolved this.
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The VACUUM code methodology:

The response to the magnetic scalar potential, χ

The vacuum code solves for the magnetic scalar potential, χ, as a response C, to Bn, the

normal component of the magnetic field at the plasma surface parameterized by [X(θ), Z(θ)], 0 ≤

θ ≤ 2π in a local coordinate system (Z, θ, φ). ∇Z is normal to the surface with J = (∇Z ×

∇θ·∇φ)−1.

Thus:

χl′(θ, φ) =
∑

l

Cl′lBp
l e

−inφ, n 6= 0 (2)

where Bp
l is the Fourier component of the normalized normal field, Bp(θ) ≡ J∇χ·∇Z

The response Cll′, a Hermitian matrix, contains the effects of the external boundary conditions.

Cll′ is calculated via the application of Green’s second identity in which the defining functions

are χ and the free space Green’s function,

G(r, r′) =
1

|r− r
′| (3)
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The two dimensional Green’s function, Gn

Fourier analyze in φ:

Gn ≡ 1

2π

∮

ein(φ−φ′)

|r − r
′| dφ′, (4)

|r− r
′|2 = X2 + X ′2 + (Z − Z ′)2 − 2XX ′ cos(φ − φ′) (5)

Gn =
1

2π
√

XX ′

∫ π/2

−π/2

dφ
cos 2nφ

√

ρ̂2 + sin2 φ
, (6)

where ρ̂2 = ρ2/4XX ′, with ρ2 = (X − X ′)2 + (Z − Z ′)2.

• Gn is a function of the two parameters, ρ̂ and n.

• Gn is singular when ρ̂ → 0. The integrand oscillates for finite n and can lead to numerical

difficulties.

• The accuracy of the method turns out to be dependent on the product, nρ̂. The old method

breaks down at moderate nρ̂ and higher.
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NSTX configuration

Plasma shape modeled from the record

elongation shot of the Gates, et al. paper,

Nucl. Fusion, 2007

Distance between source and observer:

ρ =
√

(X − X ′)2 + (Z − Z ′)2

ρ̂ = ρ/
√

4XX ′.

Example:

If X ∼ X ′ ∼ 0.19m, Z −Z ′ ∼ 3.0m, then

ρ̂ ∼ 7.89
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Several alternatives to calculate Gn

• More precise calculation of the seed elliptic integrals.

– This only postpones the problem to higher n.

• Direct integration of Eq. (6) with due respect to its singular behavior.

– Partially effective. Round off errors come into play beacuse of oscillations.

• Series expansion of the integrands

– Partially effective. Limited range of validity. Good for checks.

– New integral representation for Gn valid for moderate and large nρ̂.

∗ Very effective. Complements the recursion method.
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An alternative representation for Gn

Gn ≡ 1

2π

∮

ein(φ−φ′)

|r − r
′| dφ′, (7)

• Complex plane: φ ≡ u + iv

Gn =
1

2π
√

XX ′
Re

∫ π/2

−π/2

e2inφ dφ
√

ρ̂2 + sin2 φ
, (8)

=
1

2π
√

XX ′
Re

∫ π/2

−π/2

e2in(u+iv) dφ
√

ρ̂2 + (sin u cosh v − i cos u sinh v)2
. (9)

• For, −π/2 < u < π/2, the relevant branch points occur at u = 0, v = ±v0 where

v0 = sinh−1 ρ̂. (10)
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Complex φ = u + iv plane

−π/2 π/2 u

v

0

ϕ-plane

v      

v0

- v0

Figure 1: The complex φ = u+ iv plane showing the branch points at v0 = ± sinh−1 ρ̂, the corresponding branch cuts denoted by the wavy lines, and the new deformed

contour of integration which was originally along the real axis over the range [−π/2, +π/2]. The contributions along the segments u = ±π/2, 0 ≤ v ≤ ∞ cancel each

other, and there is no contribution from the branch point, so we are left with equal contributions from both sides of the branch cut along the positive imaginary axis,
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New contour of integration

• The branch cuts are chosen as shown in Fig. 1.

Gn =
1

π
√

XX ′
Re

∫ ∞

v0

i e−2nv dv
√

ρ̂2 − sinh2 v
. (11)

• Let v ≡ v0 + z/2n:

Gn =
e−2nv0

2nπ
√

XX ′

∫ ∞

0

e−z dz
√

sinh2(v0 + z/2n) − ρ̂2

, (12)

=
e−2nv0

2nπ
√

XX ′

∫ ∞

0

e−z dz
√

(2ρ̂2 + 1) sinh2(z/2n) + ρ̂(ρ̂2 + 1)1/2 sinh(z/n)
, (13)

• The integrand is non-oscillatory and positive definite leaving the result of the cancellations

when nρ̂ is large, in the exponential factor, e−2nv0. Actually a demonstration of the Riemann-

Lebesgue lemma for this integral.
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Gaussian Quadratures

• Can numerically evaluate the integral Eq. (13)

• Introduce another change of variable, z = t2

Gn =

√
2 e−2nv0

nπ
√

XX ′A

∫ ∞

0

t e−t2dt
√

2B sinh2(t2/2n) + sinh (t2/n)
. (14)

A ≡ 2ρ̂
√

ρ̂2 + 1, B ≡ 2ρ̂2 + 1

2ρ̂
√

ρ̂2 + 1)
, (15)

• Integrand is well behaved for ρ̂ 6= 0 and amenable to Gaussian quadratures.

• Because of the strong Gaussian decay of the integrand, sufficient accuracy is obtainable if

the range of integration is finite.

• Results checked by comparison with trapezoidal and expansion methods.
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Constant relative error
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Constant relative error, ε, in the n vs. ρ̂ plane over eight orders of magnitude in ρ̂. The three

straight lines on the left show the results using Gaussian integration of Eq. (14). Dashed line:

ε = 10−6 with 64 points over the range [0,7]. Thick solid line: ε = 10−9 using 64 points in [0,7]

and also closely represents ε = 10−6 using 32 points in [0,5]. Dotted line: ε = 10−9 using 32

points in [0,5]. The two lines on the right correspond to ε = 10−9, for the trapezoidal (dotted

line) and recursion (dashed line) methods. The arrows indicate the direction where the relative

error decreases. The thin solid line coresponds to nρ̂ = 10−1

Choose old method for nρ̂ ≤ 0.1 and new method otherwise.
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Asymmetry the response matrix, Cll′

Cll′ should be Hermitian:
JOBID = nstx-50

Asymmetries in the response

----------------------

Sum of diagonals, sd = 2.8714E+06

Sum of off-diagonals, sod = 5.1338E+06

Difference in off diagonals, dod = 4.7385E+00

Asymmetry [dod/sod] = 9.2301E-07

[dod/(sd+sod)] = 5.9193E-07

------------

PPPLPRINCETON PLASMA PHYSICS LABORATORY



– The vacuum Green’s Function valid for high n. NSTX applications ....– PPPL, Princeton, NJ Sept. 15 – 16, 2009 13

Comparison between old and new

Asymmetry, dod/sod

n Old New

1 4.9002E-06 4.9177E-06

3 3.5421E-05 1.4772E-06

5 5.4379E-02 9.2401E-07

10 7.2024E-01 3.7150E-07

15 7.6367E-01 2.6245E-07

20 xxxx 2.4956E-07

50 xxxx 5.9193E-07

· · · xxxx · · ·

• Old method breaks down even at n = 5

• New method still accurate at n = 50 and

beyond.
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PEST-II results on NSTX – I

The modified pestcode now correctly calculates that the most unstable toroidal mode number

for the nstx shot 129015 is n = 4. Previous calculations broke down at n ∼ 2 − 3.

PPPLPRINCETON PLASMA PHYSICS LABORATORY



– The vacuum Green’s Function valid for high n. NSTX applications ....– PPPL, Princeton, NJ Sept. 15 – 16, 2009 15

PEST-II results on NSTX – II

Some preliminary calculations to study the shape dependence on elms stability for moderately

high n in nstx. This is relevant to the xp proposed by Aaron Sonntag.
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Relationship to the Legendre polynomials

• An integral representation of the associated Legendre function as a function of its conventional

variable s, which has its origins in spherical coordinates:

P n
ν (s) =

Γ(ν + n + 1)

2πΓ(ν + 1)

∮

[

s +
√

s2 − 1 cos φ
]ν

einφ dφ. (16)

s =
2ρ̂2 + 1

2
√

ρ̂2(ρ̂2 + 1)
=

2ρ̂2 + 1

2R̂2
(17)

where R2 = 4XX ′√ρ̂2(ρ̂2 + 1) ≡ 4XX ′ R̂2. (18)

Gn =
Γ(1/2 − n)

π1/2R P n
−1/2(s), (19)
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New representation for the Legendre function

• Use Eqs. (14) and (19) to find:

P n
−1/2(s) =

1√
πΓ(1/2 − n)

(

s − 1

s + 1

)n/2 ∫ ∞

0

e−nt dt
√

2s sinh2(t/2) + sinh t
. (20)

• Generalize to arbitrary ν but ν > −1:

P n
ν (s) =

1

Γ(ν + 1)Γ(−ν − n)

(

s − 1

s + 1

)n/2

×
∫ ∞

0

[

2s sinh2(t/2) + sinh t
]ν

e−nt dt. (21)

• This constitutes a new integral representation of the associated Legendre polynomial of the

first kind and properly reduces to that found in Eq. (20) when ν = −1/2.
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