

Supported by

XP-902: The Ongoing Search For the n=3 EF Source in NSTX

College W&M **Colorado Sch Mines** Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL PPPL PSI **Princeton U** Purdue U SNL Think Tank, Inc. UC Davis **UC** Irvine UCLA UCSD **U** Colorado **U** Maryland **U** Rochester **U** Washington **U Wisconsin**

S.P. Gerhardt

J.E. Menard, J.K. Park, R. Bell, B. Le Blanc, D. Gates, S. Sabbagh

NSTX Results Review, 2009

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kvushu Tokai U **NIFS** Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA. Frascati CEA, Cadarache **IPP**, Jülich **IPP**, Garching ASCR, Czech Rep **U** Quebec

Office of

Science

n=3 Error Field Inferred From Asymmetric Response of Plasma Rotation and Sustainment to n=3 Fields

XP-902, Results Review, Gerhardt

XPs 701, 823, and 902 Combined To Provide the Optimal n=3 Correction Current as a Function of I_P, B_T

For a given combination of I_P , B_T , and κ , compute the "optimal" n=3 correction by maximizing the angular momentum.

These control parameters map directly to potential EF sources: $I_{\rho} \rightarrow I_{\rho} \rightarrow I_{\rho} \rightarrow B_{\tau} \rightarrow I_{\tau \rho}$ $\kappa \rightarrow I_{\rho \sigma}$

Optimal Correction Correlates Best With The PF-5 Current

Limited Scan in Reversed B_{τ} (Not Plotted) Showed That the Optimal Correction Did Not Change Sign

Out of Round PF-5 Is The Likely Source of the EF

• PF-5 Coils are out of round, with a significant n=3 component.

- Vacuum calculation predicts that 185A of SPA current can cancel the error field.
- Phase between applied field and EF is reasonably (fortuitously) good.
- Consistent with XP-805 observation that n=2 EFs are small.

NTV Calculations Including the Plasma Response Indicated Correction Magnitudes Comparable to That in Experiments

NTV Calculations: EF+Applied Field Trend is right, but magnitudes are all wrong. NTV Calculations: EF+Applied Field+Plasma Response Magnitudes are about correct: T=dL/dt~.05/.1

Calculations By J.-K. Park

Conclusions And Next Steps

- Conclusions
 - There is an n=3 EF.
 - The n=3 EF is observed to scale with the PF-5 coil current.
 - The phase and amplitude of the correction is consistent with that expected from the known coil distortion.
- Next Step:
 - APS contributed talk, Mode Control Workshop invited talk, both on EFs in NSTX.
 - PPCF paper on non-resonant EF measurements and correction.
 - Implement n=3 correction dynamically tied to the PF-5 coil current?

XP-930: Shot Development

- XP-930: RFA measurements as a test of proximity to MHD stability limits.
 - Didn't actually do this XP.
- Roger showed ~0.6 days for XP-930 shot development.
 - Low- δ (0.4), high- κ shot diverting with PF-2 only.
- This development was quite productive.
 - Was used for S.P. control development Kolemen XP.
 - This was then used for the J. Kallman LLD XP.
 - This was used for A. Sontag ELM XP.
- We should consider actually running XP-930 next year.

Eight Total Scans Attempted, Though Only Five are Useful

Scan	Ір	BT	κ (Irdfit06)	# Shots	ХР
0	800	0.45	2.24	7	701
1	750	0.42	2.36	5	823
2	900	0.45		4	823
3	1130	0.45	2.36	8	823
4	1111	0.55	2.26	8	902
5	750	0.45	2.22	4	902
6	750	0.45	2.26	8	902
7	900	0.45	2.18	8	902

- Dark blue rows are good scans
- At least 6 discharges with a large range of n=3 levels required for a good fit.
- Range of I_P , B_T , and κ allow the different sources to be decoupled.

Determine the Optimal Correction By Scanning the Applied n=3 Field

- Pick a discharge scenario with given values of $\{I_P, B_T, \kappa\}$.
- Apply n=3 fields of various amplitudes and phase.
- Determine the amplitude and phase which maximizes the plasma angular momentum.
- Repeat for different values of {I_P, B_T, κ } to determine scaling of correction with coil currents.

Scan 0: XP 701, I_P=800 kA, B_T=0.44 T

Scan 3: XP 823, I_P=1100 kA, B_T=0.45 T (I)

Scan 6: XP 902, I_P=750 kA, B_T=0.45 T

NSTX

Scan 7: XP 902, I_P=900 kA, B_T=0.5 T

Optimal Correction Correlates Well With the PF-5 Coil Current

• Optimal correction is apparently ~15 A n=3 per 1kA PF5.

Correction Essentially Uncorrelated with the TF Current

No Correlation of Correction With PF-3 or OH

- PF-2 coil not used in these discharges.
- Both PF-3 and OH value at end of flat-top scale (roughly) with I_P.
- Best fit lines through zero don't reveal any trend.

Experimental Correction Consistent With Prediction Based on PF Coil Shape

 PF-5 coil known to have a slightly triangle shape

Part 2 Shot List: Testing of Optimized Correction

- Reference: Optimal I_P , B_T pair from previous scans.
 - Looks now like $[I_P, B_T] = [1100 \text{ kA}, 0.45\text{ T}]$ is a good configuration.
- Choose the PF5/SPA gain coefficients as:

 $G_{PF5,SPA1} \approx -15 \times f \quad (A/kA)$ $G_{PF5,SPA2} \approx -15 \times f \quad (A/kA)$ $G_{PF5,SPA3} \approx +15 \times f \quad (A/kA)$

• 8 (or less) shot scan of the Gain Multiplier "f", verifying that realtime correction works.

SPA 1 Optimal	SPA 2	SPA 3	Gain		SPA 2		
Gain	Optimal Gain	Optimal Gain	Multiplier	SPA 1 Gain	Gain	SPA 3 Gain	Shot Number
-15	-15	15	-1	15	15	-15	
-15	-15	15	-0.5	7.5	7.5	-7.5	
-15	-15	15	0	0	0	0	
-15	-15	15	0.5	-7.5	-7.5	7.5	
-15	-15	15	1	-15	-15	15	
-15	-15	15	1.5	-22.5	-22.5	22.5	
-15	-15	15	2	-30	-30	30	
-15	-15	15	2.5	-37.5	-37.5	37.5	

