XP-902: The Ongoing Search For the n=3 EF Source in NSTX

College W\&M
Colorado Sch Mines
Columbia U
Comp-X
General Atomics
INEL
Johns Hopkins U
LANL
LLNL
Lodestar
MIT
Nova Photonics
New York U
OId Dominion U
ORNL
PPPL
PSI
Princeton U
Purdue U
SNL
Think Tank, Inc.
UC Davis
UC Irvine
UCLA
UCSD
U Colorado
U Maryland
U Rochester
U Washington
U Wisconsin

S.P. Gerhardt
J.E. Menard, J.K. Park, R. Bell, B. Le Blanc,
D. Gates, S. Sabbagh
NSTX Results Review, 2009

Culham Sci Ctr
U St. Andrews
York U
Chubu U
Fukui U
Hiroshima U
Hyogo U
Kyoto U
Kyushu U
Kyushu Tokai U
NIFS
Niigata U
U Tokyo
JAEA
Hebrew U
loffe Inst
RRC Kurchatov Inst TRINITI
KBSI
KAIST
POSTECH
ASIPP
ENEA, Frascati CEA, Cadarache

IPP, Jülich
IPP, Garching ASCR, Czech Rep

U Quebec

n=3 Error Field Inferred From Asymmetric Response of Plasma Rotation and Sustainment to $\mathrm{n}=3$ Fields

XPs 701, 823, and 902 Combined To Provide the Optimal n=3 Correction Current as a Function of $\mathrm{I}_{\mathrm{P}}, \mathrm{B}_{\mathrm{T}}$

For a given combination of I_{p}, B_{T}, and κ, compute the "optimal" $n=3$ correction by maximizing the angular momentum.
These control parameters map directly to potential EF sources: $I_{P} \rightarrow I_{P F 5,} I_{P F 3} \quad B_{T} \rightarrow I_{T F} \quad \kappa \rightarrow I_{P F 3}$

Optimal Correction Correlates Best With The PF-5 Current

Limited Scan in Reversed B_{T} (Not Plotted) Showed That the Optimal Correction Did Not Change Sign

Out of Round PF-5 Is The Likely Source of the EF

- PF-5 Coils are out of round, with a significant $\mathrm{n}=3$ component.
- Vacuum calculation predicts that 185A of SPA current can cancel the error field.
- Phase between applied field and EF is reasonably (fortuitously) good.
- Consistent with XP-805 observation that $\mathrm{n}=2 \mathrm{EFs}$ are small.

Calculation By JEM

NTV Calculations Including the Plasma Response Indicated Correction Magnitudes Comparable to That in Experiments

NTV Calculations: EF+Applied Field Trend is right, but magnitudes are all wrong.

NTV Calculations: EF+Applied Field+Plasma Response
Magnitudes are about correct:

$$
T=d L / d t \sim .05 / .1
$$

NTV torque by total field

Calculations By J.-K. Park

Conclusions And Next Steps

- Conclusions
- There is an $n=3 E F$.
- The n=3 EF is observed to scale with the PF-5 coil current.
- The phase and amplitude of the correction is consistent with that expected from the known coil distortion.
- Next Step:
- APS contributed talk, Mode Control Workshop invited talk, both on EFs in NSTX.
- PPCF paper on non-resonant EF measurements and correction.
- Implement $\mathrm{n}=3$ correction dynamically tied to the PF-5 coil current?

XP-930: Shot Development

- XP-930: RFA measurements as a test of proximity to MHD stability limits.
- Didn't actually do this XP.
- Roger showed ~ 0.6 days for XP-930 shot development.
- Low-ס (0.4), high-к shot diverting with PF-2 only.
- This development was quite productive.
- Was used for S.P. control development Kolemen XP.
- This was then used for the J. Kallman LLD XP.
- This was used for A. Sontag ELM XP.
- We should consider actually running XP-930 next year.

Eight Total Scans Attempted, Though Only Five are Useful

Scan	Ip	BT	$\kappa($ Irdfit06)	\# Shots	XP
$\mathbf{0}$	$\mathbf{8 0 0}$	$\mathbf{0 . 4 5}$	$\mathbf{2 . 2 4}$	7	701
1	750	0.42	2.36	5	823
2	900	0.45		4	823
$\mathbf{3}$	$\mathbf{1 1 3 0}$	$\mathbf{0 . 4 5}$	$\mathbf{2 . 3 6}$	$\mathbf{8}$	$\mathbf{8 2 3}$
$\mathbf{4}$	$\mathbf{1 1 1 1}$	$\mathbf{0 . 5 5}$	$\mathbf{2 . 2 6}$	$\mathbf{8}$	$\mathbf{9 0 2}$
5	750	0.45	2.22	4	902
6	750	$\mathbf{0 . 4 5}$	$\mathbf{2 . 2 6}$	8	902
7	$\mathbf{9 0 0}$	$\mathbf{0 . 4 5}$	$\mathbf{2 . 1 8}$	$\mathbf{8}$	$\mathbf{9 0 2}$

- Dark blue rows are good scans
- At least 6 discharges with a large range of $n=3$ levels required for a good fit.
- Range of I_{P}, B_{T}, and κ allow the different sources to be decoupled.

Determine the Optimal Correction By Scanning the Applied $n=3$ Field

- Pick a discharge scenario with given values of $\left\{I_{P}, B_{T}, \kappa\right\}$.
- Apply $\mathrm{n}=3$ fields of various amplitudes and phase.
- Determine the amplitude and phase which maximizes the plasma angular momentum.
- Repeat for different values of $\left\{I_{P}, B_{T}, \kappa\right\}$ to determine scaling of correction with coil currents.

Scan 0: XP 701, $\mathrm{I}_{\mathrm{P}}=800 \mathrm{kA}, \mathrm{B}_{\mathrm{T}}=0.44 \mathrm{~T}$

Scan 3: XP 823, $I_{P}=1100 \mathrm{kA}, \mathrm{B}_{\mathrm{T}}=0.45 \mathrm{~T}$ (I)

Scan 4: XP 902, $I_{P}=1100 \mathrm{kA}, \mathrm{B}_{\mathrm{T}}=0.55 \mathrm{~T}$

Scan 6: XP 902, $\mathrm{I}_{\mathrm{P}}=750 \mathrm{kA}, \mathrm{B}_{\mathrm{T}}=0.45 \mathrm{~T}$

Scan 7: XP 902, $\mathrm{I}_{\mathrm{P}}=900 \mathrm{kA}, \mathrm{B}_{\mathrm{T}}=0.5 \mathrm{~T}$

Optimal Correction Correlates Well With the PF-5 Coil Current

- Optimal correction is apparently $\sim 15 \mathrm{~A} \mathrm{n}=3$ per 1 kA PF5.

Fit Slope: 14.9014 A/kA

Correction Essentially Uncorrelated with the TF Current

No Correlation of Correction With PF-3 or OH

- PF-2 coil not used in these discharges.
- Both PF-3 and OH value at end of flat-top scale (roughly) with I_{P}.
- Best fit lines through zero don't reveal any trend.

Experimental Correction Consistent With Prediction Based on PF Coil Shape

- PF-5 coil known to have a slightly triangle shape

Part 2 Shot List: Testing of Optimized Correction

- Reference: Optimal I_{P}, B_{T} pair from previous scans.
- Looks now like $\left[l_{P}, B_{T}\right]=[1100 \mathrm{kA}, 0.45 \mathrm{~T}]$ is a good configuration.
- Choose the PF5/SPA gain coefficients as:

$$
\begin{aligned}
& G_{P F, S P A 1} \approx-15 \times f \quad(A / k A) \\
& G_{P F 5, S P A 2} \approx-15 \times f \quad(A / k A) \\
& G_{P F, S P A 3} \approx+15 \times f \quad(A / k A)
\end{aligned}
$$

- 8 (or less) shot scan of the Gain Multiplier "f", verifying that realtime correction works.

SPA 1 Optimal Gain	SPA 2 Optimal Gain	SPA 3 Optimal Gain	Gain Multiplier	SPA 1 Gain	SPA 2 Gain	SPA 3 Gain	Shot Number
-15	-15	15	$\mathbf{- 1}$	15	15	-15	
-15	-15	15	$\mathbf{- 0 . 5}$	7.5	7.5	-7.5	
-15	-15	15	$\mathbf{0}$	0	0	0	
-15	-15	15	$\mathbf{0 . 5}$	-7.5	-7.5	7.5	
-15	-15	15	$\mathbf{1}$	-15	-15	15	
-15	-15	15	$\mathbf{1 . 5}$	-22.5	-22.5	22.5	
-15	-15	15	$\mathbf{2}$	-30	-30	30	
-15	-15	15	$\mathbf{2 . 5}$	-37.5	-37.5	37.5	

