

Supported by

XP933: NTV physics at varied $v_i^*/q\omega_E$ and search for offset rotation in NSTX

College W&M **Colorado Sch Mines** Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL I odestar MIT Nova Photonics New York U Old Dominion U ORNL PPPL PSI Princeton U Purdue U Sandia NL Think Tank, Inc. UC Davis UC Irvine UCLA UCSD **U** Colorado **U** Marvland **U** Rochester **U** Washington **U** Wisconsin

v1.1

S.A. Sabbagh¹, R.E. Bell², K.C. Shaing³, J.W. Berkery¹, S.P. Gerhardt², J.M. Bialek¹, D.A. Gates², B. LeBlanc², J.E. Menard², K. Tritz⁴, and the NSTX Research Team

¹Department of Applied Physics, Columbia University, New York, NY, USA ²Plasma Physics Laboratory, Princeton University, Princeton, NJ, USA ³University of Wisconsin, Madison, WI, USA ⁴Johns Hopkins University, Baltimore, MD, USA

> NSTX Results and Theory Review September 15-16, 2009 Princeton Plasma Physics Laboratory

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kvoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA. Frascati **CEA.** Cadarache IPP, Jülich **IPP**, Garching ASCR, Czech Rep U Quebec

Office of

Science

XP933: NTV physics at varied $v_i^*/q\omega_E$ and search for offset rotation in NSTX

Motivation

- Determine key aspects of NTV physics to gain confidence in extrapolation to future devices
- Goals
 - □ Investigate damping over range of $v_i^*/q\omega_E$ to determine if the expected saturation of NTV at increased E_r actually occurs
 - Key for both low and high rotation devices (ITER, ST-CTF)
 - Does ST data reveal new physics, or revise applicability criteria?

Determine neoclassical offset rotation

- NTV offset rotation found in tokamaks (Garofalo, 2008), but not yet determined in NSTX
- Potentially important for low ω_{ϕ} devices (ITER)
- Reversed I_p operation will allow better determination of offset rotation

Addresses

- NSTX IR(10-1) milestone
- ITPA joint experiment MDC-12

Does
$$1/v_i$$
 scaling $\rightarrow v_i/(v_i^2 + \omega_E^2)$?

2

Utilize lithium and n = 1 EFC to study non-resonant braking over long timescale >> momentum diffusion time

Past data

Non-resonant braking evolves into resonant braking, precludes accurate non-resonant NTV evaluation

New approach

- Utilize n = 1 EFC and lithium to delay or eliminate rotating n = 1 MHD
 - n = 1 MHD is the cause for strong resonant ω_{ϕ} damping
- **Examine braking from different initial** ω_E ($v_i^* < 1$), at various R
 - Initial n = 3 braking field to vary initial $\omega_{\rm E}$, then increase braking
 - If $v_i^*/q\omega_E(R) > 1$, should observe $T_i^{5/2}$ scaling
 - If $v_i^*/q\omega_E(R) < 1$, should observe saturation in braking, or other (?) scaling
- □ Look for NTV offset rotation $(T_{NTV} \sim \delta B^2(\omega_{\phi} \omega_{\phi-offset}))$
 - Allow second quasi-steady-state ω_{ϕ} to be reached after 2nd braking pulse; will data support existence of $\omega_{\phi-offset}$? (a counter-I_p offset)
 - Supplement co-injection data with *counter-injection* data best conclusion

3

Past NSTX data shows a small region of applicability for NTV collisionless regime scaling

n = 3 braking "configuration

Frequency profiles

- Collisionless NTV formulation valid in region of peak measured damping where $q\omega_E < v_i/\epsilon < \epsilon^{0.5}\omega_{Ti}$
- Computed/observed damping near boundary (low T_i, collisional regime) typically far weaker
- □ Uncertain if $\omega_{\rm E} < \varepsilon^{0.5} \omega_{\rm Ti}$ criterion is required for collisionless damping
 - Adequate criterion to describe NTV saturation due to E_r effects?
 - the $\omega_{\rm E}$ calculation neglects poloidal flow and uses carbon ω^* , may be overestimated

XP933: NTV physics at varied $v_i^*/q\omega_E$ and search for offset rotation in NSTX – Brief Status

Status

- □ NTV braking observed from all initial $v_i^*/q\omega_E(R)$ variations made in experiment (n = 3 configuration)
 - Strong braking observed with lithium, saturation of braking not observed
- Braking of resonant surfaces appeared in many instances, but without locking, even at very low plasma rotation
 - This, and stronger NTV braking at increased T_i correlate with Li operation
- $\hfill \hfill \hfill$
 - Provocative result either island width is decreasing at low ω_{ϕ} (why?), or drag at island caused by "island NTV" ~ ω_{ϕ} (K.C. Shaing, PRL 87 (2001))
- No clear NTV offset rotation (yet)
 - Further analysis needed. If $\omega_{\phi-offset}$ exists, it would appear to be small
 - Difference between C and D rotation at low values of V_b to be examined
- Quantitative analysis is next step
 - First results for ITPA MHD October '09 meeting

5