

Supported by

XP935: Search for multiple RWM behavior at high β_N

College W&M **Colorado Sch Mines** Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL I odestar MIT Nova Photonics New York U Old Dominion U ORNL PPPL PSI Princeton U Purdue U Sandia NL Think Tank, Inc. UC Davis UC Irvine UCLA UCSD **U** Colorado **U** Marvland **U** Rochester **U** Washington **U** Wisconsin

v1.1

S.A. Sabbagh¹, R.E. Bell², J.W. Berkery¹, J.M. Bialek¹ L. Delgado-Aparicio², S.P. Gerhardt³, J.E. Menard³, D.A. Gates³, B. LeBlanc³, F. Levinton⁴, K. Tritz², H. Yu⁴

¹Department of Applied Physics, Columbia University, New York, NY ²Johns Hopkins University, Baltimore, MD ³ Princeton Plasma Physics Laboratory, Princeton, NJ ⁴Nova Photonics, Inc., Princeton, NJ

> NSTX Results and Theory Review September 15-16, 2009 Princeton Plasma Physics Laboratory

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kvoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA. Frascati **CEA.** Cadarache **IPP**, Jülich **IPP**, Garching ASCR, Czech Rep U Quebec

XP935: Search for multiple RWM behavior at high β_N

Goals

- Determine if unstable RWM is born from observed, stable RWM (with frequency near peak resonant field amplification – XP931), or a 2nd mode
 - Provides understanding to best minimize stored energy fluctuations at high β_N (e.g. through RWM active control improvement)
 - If same mode, supports single mode physics model; key conclusion for RFA control of NBI
 - If second mode, supports multi-mode theory, key conclusion for RWM control in ST, also, key conclusion for RFA control of NBI
- **Determine** β_N dependence of RFA for these modes
- **Determine effect of** ω_{ϕ} on these modes as marginal stability approached
- Determine effect of active n = 1 control for these modes near marginal stability

Addresses

- □ NSTX R(09-1) and IR(10-1) milestones
- □ ITPA joint experiment MDC-2.1, MDC-2.2

Direct approach to investigate multiple RWMs

- Approach
 - Past approach: determine ideal mode structure and compare to external magnetics
 - ME-SXR allows direct approach to finding mode
 - direct observation of stable, rotating RFA as RWM is driven unstable
 - RFA to be compared with results from XP931 (ME-SXR)
 - Unstable RWM will either
 - Grow from stable, rotating RFA as marginal stability is approached
 - Grow independent of stable RFA as instability threshold is crossed

Status

- Scan in normalized beta completed, with MSE data
 - Notable: six shots with $\beta_N > 6$, reduced $I_p = 0.52$ MA reached $\beta_N = 7.4$
- Rotating 30Hz seed fields show resonant field amplification, and "by eye" correlation with SXR measurements
 - several long-pulse (~ 1.3s) shots with RFA seed fields
 - \sim 30 Hz SXR activity shown to increase in radial extent as β_N increases
- Observed growing RWM apparently independent of the 30 Hz activity

High β_N shots exhibit low frequency activity in magnetic/kinetic diagnostics

Hypothesis

- Mode that eventually goes unstable is locked and stabilized
- Mode that is observed in magnetic RFA and kinetics is stable 2nd mode

WNSTX

Multimode response theoretically expected to be significant at high β_N

XP935: NSTX Results and Theory Review Meeting (S.A. Sabbagh, et al.)

September 15th – 16th, 2009

Multi-mode VALEN code testing successfully on high β_{N} cases

Talk by Jim Bialek gives further detail on multi-mode VALEN
To be used to determine response of 2nd mode to feedback, error field

NSTX

RFA of co-rotating applied field observed, along with oscillations in ME-SXR signals

ME-SXR oscillations also before / after pre-programmed AC

- Apparent correlation with $n = 1 B_p$ sensor amplitude
- [•] Need to quantify amplitude of ME-SXR vs. β_N , compare to magnetic RFA

Mode observed in ME-SXR at ~30Hz covers greater radial extent as β_{N} increased

□ Note: proximity to marginal stability (e.g β_N plus ω_{ϕ} level) may be key

- □ Some high $\beta_N \sim 6$ shots show less mode activity (e.g. 133478) need to quantify
- 0 NSTX

The observed growing RWM appears to be independent of the stable, ~30 Hz activity

Unstable mode is locked; ME-SXR mode apparently co-rotating

Greater radial extent of ~ 30Hz during RWM growth, but appears superposed

- Make correlation between magnetic and kinetic measurements of mode activity (lot of signal processing)
- $\hfill Analyze/quantify ME-SXR amplitude increase with <math display="inline">\beta_N$; correlate with magnetic RFA
- Examine radial extent of mode activity
 - Data inversions
 - Compare to theoretical expectations
- Examine larger number of shots to distinguish mode activity
 - □ Also consider RWM unstable shots from the larger database (as ME-SXR ~ 30 Hz mode activity appears in many high β_N shots).

