

Supported by

Dependence of momentum and particle pinch on collisionality

College W&M **Colorado Sch Mines** Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL PPPL PSI **Princeton U** Purdue U SNL Think Tank, Inc. UC Davis **UC** Irvine UCLA UCSD **U** Colorado **U** Maryland **U** Rochester **U** Washington **U Wisconsin**

Wayne Solomon, PPPL

With S.M. Kaye, L.F. Delgado-Aparicio ... and the NSTX Research Team

NSTX Results and Theory Review Transport and Turbulence Topical Science Group September 15-16, 2009

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache **IPP**, Jülich **IPP, Garching** ASCR, Czech Rep **U** Quebec

- Aims:
 - Compare dependence of momentum pinch velocity on collisionality with analytic theory and/or gyrokinetic predictions
 - Compare momentum pinch velocity with particle pinch velocity
- Technique:
 - Use n=3 non-resonant magnetic perturbations to distort the rotation profile, allowing for separation of the roles of momentum diffusion vs convection (pinch).
 - Scan collisionality by varying Ip, Bt at fixed q
 - As reported by Kaye et al, IAEA 2006
 - Use Ne puffing and/or supersonic gas injection to perturb edge density and measure particle transport properties

Motivation

- Rotation widely acknowledged as playing critical and beneficial role in the performance of fusion plasmas
 - Stabilization of resistive wall modes and neoclassical tearing modes
 - Confinement improvement through turbulence suppression (*E* x *B* shear)
- Understanding momentum transport key to obtaining predictive knowledge of rotation for future devices
 - Momentum pinch physics important part of problem
- Size of momentum pinch will determine how peaked rotation will be in future devices
 - ITPA JEX TC-15

Ip and Bt scans at fixed q were successfully completed

- Obtained data for both momentum and particle pinch
- Achieved approximately factor of two variation in collisionality

Collisionality variation achieved through changes in Te

- "Traditional" collisionality scan keeps density constant and varies temperature
 - Main knob turns out to be B, $v^* \sim 1/B^4$
- Obtained density profiles kept relatively fixed during scan
 - Some minor variation inevitable, but needs to be included in analysis

Dimensionless scaling of temperature shows reasonable matches during the scan

- "Traditional" collisionality scan keeps density constant and varies temperature
- Obtained density profiles kept relatively fixed during scan
- Collisionality scan built up from multiple discharges around these targets

n=3 Perturbation Provided Necessary Non-Local Distortion to Rotation Profile

• Simple model for momentum flux

$$\Gamma_{\phi} = -mnR \left(\underbrace{\chi_{\phi} \frac{\partial V_{\phi}}{\partial r}}_{\substack{\text{diffusion}}} - \underbrace{V_{\phi} V_{\phi}}_{\substack{\text{convection}}} \right) + \Gamma_{RS}$$

- Residual stress drive of intrinsic rotation assumed unperturbed
 - Believed to be relatively localized to edge in any case
- Elliptic tracks of $dV_{\phi}/dr vs V_{\phi}$ indicate that determination of χ_{ϕ} and V_{ϕ}^{pinch} possible.
 - Avoid co-linearity of data set

Inferred pinch velocity shows a collisionality dependence

- Comparisons with theory beginning
- Aspects that influence momentum pinch
 - Recoil pinch from particle flux
 - Nature of microturbulence (ITG vs TEM)
 - Trapped electron collisionality regime (collisionless/collisional etc)

Pinch Appears to be Made Up of More Than Just TEP Part

 Dimensionless pinch parameter from turbulent equipartition (TEP) is -4

$$\frac{RV_{pinch}^{TEP}}{\chi_{\phi}} = -4$$

 Is the remaining variation just R/Ln dependence, or other considerations?

Neon Injection in 0.9 MA – 4.5 kG H-mode Plasmas (Without nRMP braking) Show Monotonically Increasing SXR Signals

- Check the time history of v_{θ} (CHERS).
- Get D and V from average AND *time-dependent* MIST modeling. Initial condition for the braking experiment. Core rotation reduced from ~140 to 70 km/s.
- Can the time history of the diffusivity & convective "pinch" velocity be explained neo-classically? D^{PS}(Ω)~D^{PS}(1+M*)², *Romanelli*, NF, 98. D^{PS}(Ω)~D^{PS}f(Ω), Wong, PRL, 87.

Magnetic Braking Appears to Slow Penetration of Impurities or Perhaps Even Expel Them

- No Ne puff on these discharges
- Are we changing/introducing V^{pinch}>0?
- Neon puff should enhance SNR!
- Can this effect at "mid-radius" be explained neo-classically?
- D^{PS}(Ω)~D^{PS}(1+M^{*})², Romanelli, NF, 98. D^{PS}(Ω)~D^{PS}f(Ω), Wong, PRL, 87.
- Get D and V from *time-dependent* MIST modeling.

Same Result Observed with Ne Puff (With Increased SNR)

- The monotonically increase nature of the signals is changed when applied the *n*=3 magnetic braking.
- The medium- and high-energy signals from the tME-OSXR array (sensitive to fully-stripped Neon ions) observe similar behavior.
- Magnetic braking pulses produced similar time histories of v_{ϕ} profiles.
- Need of tomographic reconstruction to calculate neon SXR emissivity.
- Get D and V from *time-dependent* MIST modeling.
- Are we just reducing the transport or introducing a new V^{*pinch*} during the braking?

Z_{eff} Also Indicates Activity At Mid-Radius With n=3 Perturbation

The Reduction of Impurity Penetration in the Core Appears Stronger Than The Edge, Compatible with Z_{eff} Observation

- The signals filtered with the Be 10 and 100 µm foils are sensitive to He- + H-like, and fully stripped Neon, respectively.
- After each *n*=3 pulses the impurity pile-up seem to be faster.
- Get D and V from *time-dependent* MIST modeling.
 - D and V different with and without nRMP
- Need to do white plate calibration + tomographic reconstruction to provide localization.
- Need to invoke outward V^{pinch} to explain observation?