Numerical Simulations of NBI-Driven Sub-Cyclotron Frequency Modes using the HYM Code

E. V. Belova, N. N. Gorelenkov, E. Fredrickson (PPPL)

NSTX Results/Theory Review, PPPL September 2009

HYM simulations for NSTX shot 135419

• HYM code has been modified to include more accurate description of the beam induced current:

 $\rm J_{beam} \rightarrow \rm J_{beam} - (\rm Z_b/\rm Z_{eff}) \ J_{beam \ ||}$

• Significantly modifies poloidal component of beam current.

• Improved fit to TRANSP profiles.

Equilibrium profiles NSTX shot #135419

HYM simulations comparison with experimental results for NSTX shot#135419 [E. Fredrickson et al]

- Several modes are unstable with toroidal mode numbers n=6 9 and frequencies f=0.4-0.8MHz (plasma frame) compared to experimental results of n=9 11, and f=0.8-1MHz.
- GAE modes.
- Linear growth rate as inferred from observed growth time $\gamma \approx 0.005 \omega_{ci}$ compared to numerically calculated $\gamma \approx 0.02$ ω_{ci} (no damping $\gamma_d = 0$).
- Similar mode structure.

Time evolution of kinetic energy from 5 linearized simulations with n=6-10 (zero damping parameter).

Mode structure: velocity and density profiles (n=9)

Magnetic field and density perturbations for n=9

Time evolution of kinetic energy from nonlinear simulations with zero damping parameter.

At peak amplitude $\delta B_{\parallel} \sim 1/3 \ \delta B_{\perp}$; at the edge the compressional component dominates $\delta B_{\parallel} > \delta B_{\perp}$.

Mode structure: velocity and density profiles (n=9)

Mode structure: magnetic field (n=9)

GAE modes always have significant compressional component at the edge – coupling to CAE modes?

Phase-space plots: resonant condition

Resonant velocity $V_{\parallel}/V_A \sim 1.6$. For 80keV ions, $V_0/V_A = 2.33$, so for resonant ions: $V_{\parallel}/V_0 \sim 0.7$.