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Three-wave interaction may play significant role in
fast-ion modes dynamics and fast-ion transport

* Linear theory has many successes (e.g. prediction of mode structure),
but may not fully explain fast-ion transport

 Nonlinear three-wave interaction of fast-ion modes common in NSTX
NB plasmas

« often observed during fast-ion loss events
* often coincident with other non-linear processes (e.g. avalanches)
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Three-wave interactions observed during
fast-ion loss events
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Spectrum suggests three-wave interactions occur
between EPM, TAE and CAE
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* spectrum spacing matches fundamental EPM:
Afrae = foom = 1, Anpypg = Ngpy = ~ 24 kHz

* TAE pair (frae1.Mrae1) and (frae2. frag2):
fraez = Fraer * Fepm + Pragz = Pragr * Neem

 Some CAE pairs can interact with EPMs, S
others with TAEs E AW L
* Two groups of CAEs: -6
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* Spacing between groups match fundamental TAE:
Af = fr,e =5, An = n,e = ~ 135 kHz




Three-wave interaction confirmed by _ EPMs with TAEs
high bicoherence of mode triplets ™

* Bicoherence tests for statistically significant
three-wave interaction

* bicoherence = coherence of nonlinear product of wave
pair with the sum wave 0
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* Bicoherence of CAEs with EPMs and with TAEs -
shows peaks corresponding to triplets indicted 2 100
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Interaction with the EPMs toroidally localizes

TAEs and CAEs into wave-packets

» CAE and TAE fluctuations concentrated into
toroidally propagating wave-packets

 band-pass filtering divides magnetic fluctuation into
distinct contributions of EPM, TAE and CAE

* TAE and CAE amplitudes modulated

* Phase of amplitude modulation increases with toroidal

angle

* Wave-packets phase-locked to EPM

» Amplitude modulation frequency = EPM frequency
* Phase of amplitude modulation correlates with toroidal

phase of EPM

* Phase-locking of wave-packets with EPM
expected from three-wave interaction

* Af/An = fgpp/ Ny for TAE and CAE spectra =
group velocity of superposition = phase velocity of EPM
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Interaction with the TAEs subdivides CAE wave-packet
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» CAE fluctuation power is modulated at TAE frequency

* CAE fluctuation power obtained by low pass filtering square of CAE fluctuation
» modulation by TAEs isolated by band-pass filtering to retain TAE frequency range

* Modulation correlates in time and space with TAE wave-packet (both
envelope and carrier wave)

* Modulation introduces TAE scale structure into EPM-induced wave-packet



Summary of Experimental Results

* Three-wave interaction may play significant role in fast-ion modes
dynamics and fast-ion transport

* Bursts of fast-ion modes over broad spectrum observed — EPM,
TAE and CAE:; bursts correlate with fast-ion loss

» Spectrum suggests three-wave interactions occur between EPM, TAE
and CAE — confirmed by high bicoherence of mode triplets

» Interaction with the EPMs toroidally localizes TAEs and CAEs into
wave -packets

» Interaction with the TAEs subdivides CAE wave-packet



Questions raised and avenues for future research

Questions for the near term

« Is spectrum of interacting TAEs (or CAEs) composed of linear eigenmodes?
(i.e. is three-wave interaction weak)?

* Is spacing of linear TAE and CAE spectrum conducive to weak three-wave interaction?
 If yes, radial/poloidal wave-packet structure may be predicted

* How does wave-packet impact on fast-ions orbits? = ORBIT calculation

» compare wave packet to random phase fluctuations with same power
* assumptions and/or measurement required for radial/poloidal wave-packet structure

« experimental cases needed with good fast-ion population diagnosis and good three-wave
statistics

Broader Questions

* Do three-wave interactions transfer energy across scales — e.g. does
EPM-TAE interaction destabilize TAEs?

* More efficient transfer of fast-ion energy to plasma?

* What nonlinearities give rise to interaction?

* MHD/fluid nonlinearities? (e.g. JXB — well-known to couple Alfvén to acoustic waves)

* toroidal modulation of fast-ion pressure?
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