Coupled Ray-Tracing and Fokker-Planck EBW Modeling for Spherical Tokamaks

Jakub Urban

Josef Preinhaelter, Gary Taylor, Joan Decker, George Vahala, Linda Vahala

A short intro on EBW

- Electron cyclotron (EC) heating an current drive is important for magnetic confinement fusion
- "Standard" **EC waves are cut off** in spherical tokamaks (STs): $\omega_{pe} \gg \Omega_{ce}$
- Electron Bernstein wave (EBW) must be used in STs
 - no upper density cut-offs
 - efficiently absorbed at any harmonics
 - efficient current drive because of interaction with suprathermals
 - must be excited by O- or X-modes
 - more difficult to control

The EBW simulation

Two coupled codes

- AMR (Antenna—Mode-conversion—Ray-tracing)
- LUKE (3D Fokker-Planck code)
- (similar to GENRAY + CQL3D)
- Antenna aiming determined by the O-X-EBW optimum
- EBW propagation inside the plasma well described by ray tracing
- Quasi-linear damping and current drive calculated by LUKE

Injection and target plasma parameters

• Only two EBW launching parameters can be chosen arbitrarily

- frequency
- vertical antenna position
- (two O-X-EBW optimums exists in opposite toroidal directions)
- Calculations carried out
 - I MW power
 - typical NSTX L-mode (and H-mode)
 - 1st and 2nd harmonic

Typical EBW behavior

Fig. 2. Ray N_{\parallel} (top) and trajectories (right) of 16 GHz EBWS in L-mode plasma for Z_A =0,±0.2,±0.4 m.

Mid-plane launch can be favorable for **central heating**, but is very **unfavorable for current drive** because of the small (and oscillating) N_{\parallel} .

Antenna vertical position scan

The current direction is determined

- by the vertical launch position, which determines the N_{II}
- by the damping location, which determines the current drive mechanism:
 Fisch-Boozer at smaller radii, Ohkawa at the edge

Frequency scan

- Frequency dependence qualitatively similar to the antenna position dependence.
- Current drive typically more effective at the 1st harmonic.

Conclusions and outlook

- AMR + LUKE is capable of complex and realistic EBW heating and current drive simulations.
- The excited EBWs can efficiently be absorbed and drive current at certain radii. The current direction is opposite for above / below mid-plane launch.
- The deposition location can be controlled by changing either Z_A or the frequency. The frequency-based control provides larger radial range.
- More simulations have to be done and analyzed
 - NSTX H-mode
 - NHTX
 - other devices (MAST, MAST Upgrade)
- EBW H&CD robustness and sensitivity will be addressed.