

Supported by

Relay Feedback and X-point Height Control

Egemen Kolemen

S. Gerhardt and D. A. Gates

2010 Results Review Nov/30/2010

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kvushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati **CEA**, Cadarache **IPP, Jülich IPP**, Garching ASCR, Czech Rep **U** Quebec

Office of

Science

2009 Run: Experimental System ID (Open Loop)

 System Id: Identify the effect of the actuator on the boundary shape.

$$\dot{y}(t)T + y(t) = Ku(t - L)$$

Reaction Curve Method

- From Step Response obtain:
 - Time delay, rise time and size of change gives the control tuning parameters.

2009 Run: Experimental System ID (Open Loop)

 System Id: Identify the effect of the actuator on the boundary shape.

$$\dot{y}(t)T + y(t) = Ku(t - L)$$

Not precise

Experimental System ID: Closed Loop Auto-tune with Relay Feedback

- period (P_u) & amplitude (Å) are used for PID controller tuning.
- Advantages: \bullet
 - Only a single experiment is needed.
 - Closed loop:
 - 1. More stable
 - 2. Enable system ID for actuators that can't be open loop (for example: vertical control)

(b)

Experimental System ID: Closed Loop Auto-tune with Relay Feedback

- The closed-loop plant response period (P_u) & amplitude (A) are used for PID controller tuning.
- Advantages:
 - Only a single experiment is needed.
 - Closed loop:
 - 1. More stable
 - 2. Enable system ID for actuators that can't be open loop (for example: vertical control)

Successful Developed Combined X-point Height / SP Control

Evolution of Plasma Boundary: X-point height roughly constant as OSP ramps

- Tuned via Relay-Feedback.
- Achieved RMS <1 cm X-point height error and <2 cm SP.
- Scenario used for LLD experiments.

For 2011: Solution to "Hand-off" Problem

- Problem when changing between control phases.
- Normal Control has two parts:
 - 1. Trajectory control: Scenario Development (Feed forward)
 - 2. Feedback control: Controlling parameters close to the defined scenario.
- Need: Ability to add these two waveforms.
 - Simply be able to add PID output to the Voltage from the last phase. (We have this capability only for Relay Feedback but not for regular PID).
- Then, we will avoid "hand-off" problem

Supported by

Egemen Kolemen

S. Gerhardt and D. A. Gates 2010 Results Review Nov/30/2010

NSTX 2010 Run Results Review, Egemen Kolemen (11/30/2010)

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U **NIFS** Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati **CEA**, Cadarache IPP, Jülich **IPP**, Garching ASCR, Czech Rep **U** Quebec

Office of

Science

First Ever Use of PF4 for Shape Optimization

- Motivation 1: Increased current capability of NSTX Upgrade may require vertical field from the PF4 in addition to PF5.
 - Preprogram PF4 with PF5 for outer gap control

NSTX 2010 Run Results Review, Egemen Kolemen (11/30/2010)

Squareness, ζ, Control with PF4

XMP Control Results: PF3-PF4 interaction

- To solve this problem, move the PF3 and PF4 control segment.
- Could not do this:
 - Problem with PCS Segment Editor.
 - Hopefully will be fixed for 2011.
- To overcome the problem without changing the segments:
- Hand adjust a non-realistic looking shape request.
- Squareness Request of +0.4 from the normal request.
- Works but don't use the squareness in these shots.

Pressure Profile Change as PF4 Increases

- PF4 (opposing PF5) up to 5 kA (~2 inches in figure) increases pressure
- Too high PF4 interacts with the wall and plasma is not as good.

Higher Performance: PF4 of 1-4 kA

- Optimal PF4 ~1-4 kA for performance.
- Confinement time increases
- Energy confinement increases
- Flux consumption reduces.
- Too high PF4 interacts with the wall and plasma is not as good.
- Note for comparison:
- Negative squareness results were all worse than PF4=0 fiducial case.

Supported by

Office of Science

Vertical Stability for NSTX and NSTX-U

Egemen Kolemen

D. A. Gates, S. Gerhardt

Monday Physics Meeting PPPL, NJ Nov/15/2010

NSTX 2010 Run Results Review, Egemen Kolemen (11/30/2010)

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kvushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA. Frascati **CEA**, Cadarache **IPP, Jülich IPP**, Garching ASCR, Czech Rep **U** Quebec

2008 Run: Vertical Displacement Measurements

Vertical displacement for uncontrollable shots

- At 300 ms, we turned the controller off and let the plasma drift.
- When we turned the control back on some of the shots recovered while others hit the wall.

Experimental LRDFIT Growth Rate (Gamma) 54-95 s^-1

			r							r			1	
Egeme			Control Turned Off			Control Turned On			Peak Plasma Displacement			Gamma Voltage		
														n
												1.393	no vde	
VDE +Z	1 1270	74	20	0.301	-0.0018	1.3436	0.32	0.0046	1.3865	0.325	0.005	9	at all	
	2 1270	75	20	0.301	0.0005	1.3774	0.32	2 0.0344	1.4927	0.329	0.0552	1.61	95	600
max	2 4070	70	20	0.204	0 0005	4 4700	0.22		0.4000	0.007	0.0045	3.500	70	4 4 9 9
controlled	3 12/0	0	30	0.301	-0.0025	1.4708	0.3	5 0.0663	2.1930	0.337	0.0845	2 079	70	1400
	14 1270	37	30	0.301	-0.003	1.3482	0.33	3 0.0587	1.6485	0.337	0.0814	2.070	74	1200
												3.742		
un-controlled	10 1270	33	40	0.301	-0.002	1.378	0.34	4 0.1176	3.5021	0.341	0.1244	3	78	1600
up controlled	13 1270	36	40	0 301	0.0025	1 3885	0.3/	1 0.0043	3 3/01	0 340	0 5268	6.372 1	64	1600
un-controlled	13 12/0	50	40	0.301	-0.0023	1.0000	0.5-	+ 0.0340	3.3401	0.049	0.5200		07	1000
	5 1070	70	25	0 201	0.0012	1 2602	0 221	5 0.0500	1 1000	0.241	0.0746	1.158	61	200
VDE -Z	5 1270	0		0.301	-0.0013	1.3002	0.55	-0.0508	1.1920	0.341	-0.0740	4 1 168	07	800
	6 1270	79	35	0.301	-0.0009	1.3592	0.33	5 -0.0865	1.1954	0.341	-0.1347	3	73	1300
												1 4 4 0	no vde -	control
	7 1270	30	40	0 301	-0 0037	1 4283	0.34	4 -0.005	1 46	0 345	-0 0066	1.440	made un	stable
	,											1.087		
	8 1270	31	40	0.301	-0.0034	1.4129	0.34	4 -0.1369	1.1969	0.349	-0.2491	7	69	1500
												0.000		
max controlled	12 1270	35	40	0 301	0 0027	1 3899	0.34	1 -0 1504	1 1748	0 349	-0 4006	0.938	54	1600
			-70	0.001	U.U.U.L		0.0-			0.040	0	0.732		
un-controlled	11 1270	34	40	0.301	0.0001	1.3759	0.34	4 -0.1879	1.1783	0.353	-0.6069	8	67	1600

straight VDE

4 127077 none

74

()) NSTX

TokSys is an Integrated Plasma Control Environment That Allows Systematic Design and Testing of Controllers

Toksys Results Growth Rate (Gamma) 20-25 s^-1

Shot #	Gamma s [^] -1
127077	23
127078	25
127079	24
127080	22
127081	24
127082	22
127083	20
127084	20
127085	21
127086	23
127087	21

Mismatch Between XP and Toksys

• XP data more unstable (3-4 times) than the model

Example of a mismatch between TokSys numerical plasma model and the experimental data. Depending on how the model is used plasma or te coil model.

All XPs Can Be Modeled with the Same Two Parameters

•

Where $\gamma = 75s^{-1}$. The first order effect of the coils on the vertical motion is assumed to be:

 $\dot{Z}(t) = \gamma Z(t)$

i.e. the current changes the velocity of the rigidly moving plasma. Also during the ramp up I is proportional to t. Combining these two effects, we can find an approximation for the dynamics of the vertical motion after the control is turned on as:

$$\ddot{Z}(t) = \gamma \dot{Z}(t) + \alpha t$$

 α is found by data fitting as 4.5e5

2010 Experiment: High Aspect Ratio Vertical Growth Rate

- Thanks to Relay Feedback, we were able to freeze voltage request in Isoflux for the first time.
- This enabled vertical growth rate measurements

New Experimental Growth Rate (Gamma) 45-170 s^-1 versus 10-42 s^-1 for Model

- High Aspect Ratio More Unstable
- Need better vertical control for Upgrade

- Trying to fix the TokSys model
- Also, trying to update the Power Supply model (with R. Hatcher)
- Probably need better models (3D?).

Slide title

- Important main point
 - Important detail
 - Another important sub-detail

First Ever Use of PF4 for Shape Optimization

- PF5 decreases as PF4 increases.
- Squareness decreases.
- Keep other things the same.

XMP Control Results: PF3-PF4 interaction

- With PF4 control on, we reduced the gain for PF3 %30 at 360 ms.
- PF4 compensated for the loss of inward pushing effect of PF3.
 PF4 can offset both PF3 and PF5.

XMP Control Results: PF3-PF4 interaction

- Figure show the result of a ramp on PF4 from 0 to 2.6 kA.
- As PF4 increases, squareness change.
- In order to align, PF3/4/5 control points (shown in dashed black, dashed red and blue) X-point moves down.
- To solve this problem, move the PF3 and PF4 control segment. Shown in solid red, black.
- Could not do this:
 - Problem with PCS Segment Editor.
 - Hopefully will be fixed for 2011.

Higher Performance: PF4 of 1-4 kA

- Optimal PF4 ~1-4 kA for performance.
- Confinement time increases
- Energy confinement increases
- Flux consumption reduces.
- Too high PF4 interacts with NSTX 2010 Run Results Review, Egemen Kolemen (11/30/2010)

Lower BetaN Limit for PF4 in the positive direction

NSTX 2010 Run Results Review, Egemen Kolemen (11/30/2010)