

Supported by

XP-1071: High Aspect-Ratio and Elongation Shot Development

College W&M **Colorado Sch Mines** Columbia U CompX **General Atomics** INL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL PPPL PSI Princeton U Purdue U SNL Think Tank. Inc. UC Davis UC Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Washington **U Wisconsin**

S.P. Gerhardt

E. Kolemen, J.E. Menard, S.A. Sabbagh and the NSTX Research Team

NSTX Late 2010 + Early 2011 Results Review

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache **IPP. Jülich IPP, Garching** ASCR, Czech Rep **U** Quebec

Overview of XP

- Why study plasmas with larger aspect ratio?
 - Get at the physics of the ST.
 - NSTX-Upgrade will have a larger aspect ratio.
 - Many next-step ST designs are at somewhat larger aspect ratio.
- Did a successful XP to start these studies.
 - Machine not optimal...single LITER before the day started.
- Day #1: 4 shots
 - Found a strong increase in the passive vertical growth rate vs A (= R_0/a).
- Day #2: 17 shots
 - Studied plasma performance vs. A and κ .
 - Plasmas with good performance were achieved for NSTX-U shapes.
 - Found that the I_i widow for n=0 stable operation may be much reduced.

Discharges Are An Important Extension of the NSTX Operating Space

- Black lines enclose traditional NSTX operating space.
- Note strong coupling between aspect ratio and elongation.
- Record NSTX
 elongations for long(er)
 pulses and high(er)
 elongations.

Black Lines: Boundary of traditional NSTX operating space. Blue Points: High-performance discharges. Red Points: XP-1071, stable for at least 100 msec.

Good Performance Over a Range of Aspect Ratios

- I_P=900 kA, B_T=0.45 T
- Some drop in β_N at higher A (for fixed P_{inj}).
- Big hit in q₉₅. (10->7.5)
 - More ITER relevant way to get low-q₉₅ RMP data?
- Confinement is degraded by ~10%.

- H from 1.02 to 0.85.

 T_e is a bit lower, which hurts the NBCD.

Passive Growth Rate Found To Increase With Aspect Ratio

Freeze Vertical Control, Allow the Plasma to Drift Vertically.

I_i MUST Be Kept Low To Avoid VDEs

- 1 Fiducial (green) and 8 shots at higher aspect ratio.
 - Black cases vertically stable, the colored ones have VDEs.
- VDE is always triggered when I_i=0.6.
 - This is not a particularly high value.
 - Would preclude use of the scenario for many XPs.
- Motivates improvements to the n=0 controller?

Significant Reduction of the Calculated No-Wall β_N Limit in These Scenarios.

- Use actual equilibria, reconstructed with MSE, Te-Isotherm, magnetics.
- Scale pressure profile, compute δW for each one, find β_N where δW =0.
- Repeat for many many time slices and then sort those with similar q_0 .
- I_i tended to decrease with A (except when it didn't), but no clear trend in F_P .
- XP did not actively push the β_N limit...need to revisit.

Summary

- XP was successful in creating unique high-A plasmas.
 - Readily achieved the NSTX-Upgrade aspect ratio.
 - Small performance degradation observed with increasing A.
 - Found that the I_i window is much reduced.
- Many questions to be answered...some of which include:
 - How does the achievable β_{N} depend on (high) A and $\kappa?$
 - And how does the choice of MHD control tools impact the answer?
 - Is there any core confinement improvement/degradation?
 - Separate effects for e- and i- channels?
 - Can the n=0 control be made more robust?
 - Increase the gain on the voltage difference, be more sophisticated?
 - Compatibility with more exotic divertors?