

Supported by

1: XP-1006: Low Current, High-f_{NI} Experiments 2: Relationship of Transport Scalings to Non-Inductive Current Drive in NSTX

College W&M **Colorado Sch Mines** Columbia U CompX **General Atomics** INL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL PPPL PSI Princeton U Purdue U SNL Think Tank. Inc. UC Davis UC Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Washington **U Wisconsin**

S.P. Gerhardt R. Maingi, S. Kaye *and the NSTX Research Team*

NSTX Late 2010 + Early 2011 Results Review

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache **IPP. Jülich IPP, Garching** ASCR, Czech Rep **U** Quebec

Office of

Science

Overview of Day 2 of XP-1006

- Day 1: Use impurity reduction techniques to lower Z_{eff} in 700 kA, high- β_{P} scenarios.
 - Largely unsuccessful.
- Day 2: Test the limit of non-inductive fraction in low(er)-current plasmas.
 - Done during the "AM-Lithium" part of the run, machine not optimal.
 - Still, very productive.
- Took 25 discharges.
 - 14 discharges as 600 kA
 - Warmed up the machine, power scan, played with the fuelling.
 - 11 discharges at 500 kA
 - Kappa scan, power scan.
- Achievements:
 - Achieved (for first time) sustained β_P =2 during the flat-top.
 - Completed scaling of τ , f_{NI} from 0.5 to 1.3 MA.

Demonstrated β_P =2 **During** the I_P Flat-Top.

- 500, 600, and 700 kA examples.
 - 700 kA 133964 has lowest V_{surf} of an Hmode NB shot.
- Reduced beam power with I_P.
 - TRANSP shows that the loss power is about constant.
- Low current shot goes to $\beta_P=2$
- Beam fraction is much higher at 700 kA.
 - More power, higher T_e .
- Bootstrap fraction is highest at 600 kA.
 - $500 \text{ kA shot falls beneath } f_{\text{BS}} = 0.44 \epsilon^{1/2} \beta_{\text{P}}$ scaling (due to collisionality?)
- Ohmic current fraction is roughly constant.
 - $I_{OH} \sim I_P$, but T_e increases with I_P so, V_{surf} is lower at higher I_P .

Reminder: XP-1041 Showed Different Confinement Scaling Than Previous ST Results...Due to Lithium?

NSTX XP-1006 (Gerhardt, et al.)

Low Current Data Adds To Large Confinement Database in Lithiumized Data

Bootstrap Current Scaling is Consistent With Thermal Confinement Scaling

- Envelope of the f_{BS} vs. I_P curve looks like $1/I_P$.
- Bootstrap fraction scales mostly as $\epsilon^{1/2}\beta_{P_{-}}$
- Do linear regression on the bootstrap fraction against engineering variables.

$$f_{BS} = CI_P^{-1}B_T^{0.3}n_e^{0.4}P_{inj}^{0.15}\varepsilon^{-1}$$

- Aspect ratio strongly coupled to elongation... $\epsilon^{-1}=A\sim_{\kappa}$.
- Is this consistent with confinement scaling?...essentially yes!

$$f_{BS} \propto \sqrt{\varepsilon} \beta_P \propto \sqrt{\varepsilon} \frac{l_P^2 P_{abs} \tau}{V I_P^2}$$
$$\tau_{E,thermal} \propto I_P^1 B_T^{0.3} n_e^{0.35} P_{abs}^{-0.9}$$

$$\frac{\sqrt{\varepsilon}l_P^2}{V} \propto \frac{\sqrt{\varepsilon}a^2\kappa^2}{a^3\kappa A} \propto \frac{\sqrt{\varepsilon}\kappa}{aA} \propto \frac{\sqrt{\varepsilon}}{a} \propto \varepsilon^{-1/2}$$

Need to Predict the Electron Temperature (Slowing Down Time) for Beam Current Drive

Confinement Scalings Mean Density Determines the Neutral Beam Fraction

- Neutral beam current fraction increases at lower current...is this 1/I_P? No!
- Dominant terms in the NBCD:
 - Slowing down time
 - Injected powers
- Fit beam driven current with a simple formula:

$$I_{NBCD} = C_{NBCD} \frac{\overline{T_e^{3/2}}}{\overline{n_e}} (P_{inj,A} + 0.85P_{inj,B} + 0.7P_{inj,C})$$

- Factors of 0.85 & 0.7 from TRANSP

- Use regression for $T_e^{3/2}/n_e$ (~ $I_P/n_e^{3/2}$).
- Find that the dominant scaling is:

$$f_{\scriptscriptstyle NBCD} = C_{\scriptscriptstyle NBCD} \overline{n}_e^{-3/2} \Big(P_{\scriptscriptstyle inj,A} + 0.85 P_{\scriptscriptstyle inj,B} + 0.7 P_{\scriptscriptstyle inj,C} \Big)$$

- Apparent $1/I_P$ dependence in a) comes from the confinement scaling with I_P and variation of n_e and T_e with I_P

Summary:

- Day 2 of XP-1006 was very useful.
 - Completed a nice set of scans at 600 & 500 kA.
 - Achieved sustained β_P =2 for a range of parameters.
 - Didn't achieve lower loop voltage (lower T_e).
- Developed a Consistent Picture of How Confinement Scalings Impact the Non-Inductive Current Drive
 - Thermal confinement in lithiumized plasmas has a weak $B_{\rm T}$ scaling, strong $I_{\rm P}$ scaling, and strong power degradation.
 - Bootstrap fraction scales mostly with $1/I_P$, weakly on n_e and B_T , essentially independent of P_{inj} .
 - Average temperature increases with $I_P^{2/3}n_e^{-1/3}$, so beam fraction scales as $n_e^{-3/2}P_{inj}$...consistent with global scaling.
 - Need to assess how these may impact upgrade scenarios.
 - In any case, need to expand these results over the wider range available in NSTX-Upgrade.

f_{BS} & $β_P$ Didn't Change with κ (within range tested).

- 500 kA plasmas, 4 MW.
- Aspect ratio and elongation strongly coupled in scan.
 - See talk on XP-1071.
- All shots achieve $\beta_P \sim 2$.
 - Bootstrap fractions of ~50%.
- I_i is kept quite low.

