Preliminary Results from the 2010 Joint Research Milestone (XP 1043)

Supported by

College W&M **Colorado Sch Mines** Columbia U Comp-X **General Atomics** INI Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U Old Dominion U ORNL PPPI PSI Princeton U Purdue U SNI Think Tank. Inc. UC Davis **UC** Irvine UCLA UCSD **U** Colorado **U** Maryland **U** Rochester **U** Washington **U** Wisconsin WWPHS North

T.K. Gray^{1,2}, A.G. Mclean², R. Maingi² and J-W. Ahn²

¹Oak Ridge Institute for Science and Education (ORISE)

²Oak Ridge National Laboratory

NSTX 2010 Results Review Princeton Plasma Physics Laboratory Nov 30 – Dec 2, 2010

U.S. DEPARTMENT OF

ENERGY Science

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kvoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI KAIST** POSTECH ASIPP ENEA. Frascati CEA, Cadarache IPP, Jülich **IPP**, Garching ASCR, Czech Rep **U** Quebec

Office of

FY2010 JRT on SOL heat transport included analysis of data, development of two-color IR camera, and modeling

- Goal: An understanding of the heat transport in the tokamak scrape-off layer (SOL) plasma
- Data set from old XP's (434, 814, 816, 923) for non-lithiated discharges
 - Good Ip, PNBI and flux expansion scans (Mix of low and high δ)
 - Presented at PSI and IAEA (TK Gray) see these talks for data
- Dual Band IR Camera technique developed (AG Mclean)
 - Presented at HTPD conference

• XP 1043: LARGE dataset obtained with Dual Band IR camera

- Mostly high triangularity
- Some preliminary analysis presented at APS-DPP (TK Gray)
- Modeling performed with SOLT (Myra) and XGC-0 with neoclassical transport (Park, Pankin, Chang)
- Final Report Completed and available online

Complete data set of SOL heat flux widths at 2 different lithium evaporation rates between discharges

300 mg Dataset

- Measure heat flux footprints at high δ
 - I_p scan 0.7 1.3 MA
 - PNBI = 4 MW and Bt = 0.45 T
 - NBI Scan 1 6 MW @ 1 MW increments ($I_p = 0.8$ and 1.2 MA)
 - B_t Scan 0.33 0.55 T
 - I_p = 0.8 MA, P_{NBI} = 4 MW
- δ_r^{sep} scan
 - High δ : $\delta_r^{sep} = 0, -2.5, -5, -7.5, -1$ cm
 - Low $\delta;\,\delta_r^{\,\text{sep}}$ = -0.7, -1.3 cm
- C-MOD/DIII-D Similarity shape
 - $0.72 \leq I_p \leq 0.8 \text{ MA}$
- Camera resets complicating analysis

150 mg Dataset

- Measure heat flux footprints at high δ
 - I_p scan 0.7 1.3 MA
 - PNBI = 4 MW and Bt = 0.45 T
 - B_t Scan 0.35 0.55 T
 - I_p = 0.8 MA, P_{NBI} = 4 MW
 - Some comparison of 3 and 4 MW discharges
- δ_r^{sep} scan
 - High δ : $\delta_r^{sep} = 0$ and -2 cm
- C-MOD/DIII-D Similarity shape

- $~I_{\rm p}$ = 0.75 MA, $P_{\rm NBI}$ = 2 and 3 MW

• Analysis is on going

FIRNACE: Fast Infrared Research on NSTX by Automated Code Evaluation

- Integrates all aspects of dual-band IR analysis
 - Optical channel alignment (must be carried out manually once for each shot)
 - Application of temporal and spatial calibration
 - Temperature calibration of emission intensity ratios (blackbody ex-situ plus LLD in-situ)
 - Calculation of heat fluxes (accomplished with both 1-D Carslaw & Jeager, and 2-D THEODOR models, each for 1-D radial and 2-D area
 - Significant (2-3X) drop in q [MW/m2] using THEODOR
- ~150/1200 of 2010 campaign shots planned for analysis are complete
- XP1000/1002/1041 in October currently in progress

Raw dual-band data

Aligned, calibrated

T(R,t), q(R,t)

Inverse I_p dependence of SOL widths observed in discharges with lithium wall coatings

- Outer divertor peak heat flux increases with I_{p} , because both λ_{a}^{div} and λ_{α}^{mid} contract
 - Using integral definition of λ_a^{mid}
 - Data from 150 mg lithium
 - Consistent with no lithium results

- λ_a^{mid} @ 300 mg Li shows a further contraction
 - Only single band data so far
- Preliminary analysis of $I_p \ge 1.2$ MA data suggests a flattening of the trend in λ_{a}^{mid}

SOL width independent of P_{SOL} and B_t

- Outer divertor peak heat flux increases with NBI power
- λ_q^{div} and λ_q^{mid} stay constant
 - Consistent with no lithium results

• Outer divertor peak heat flux, λ_q^{div} and λ_q^{mid} insensitive to B_t

SOL width contracts modestly with increasing $|\delta_r^{sep}|$

- Preliminary analysis shows that λ_q^{div} contracts modestly with increasing $|\delta_r^{sep}|$
 - Profiles are chosen to emphasize the trend
- In the C-MOD/DIII-D shape with low δ and low f_{exp}
 - Heat flux profile narrow and Gaussian
 - λ_q^{mid} (t=0.24s) = 0.79 cm λ_q^{mid} (t=0.26s) = 0.64 cm
 - Similar to high δ results
 - $I_p = 0.75$ MA, $0.7 \le \lambda_q^{mid} \le 1.2 cm$

Summary

- XP 1043 collected an extensive amount of data on heat flux widths over a wide variety of parameters
 - Including 2 different LiTER rates
- Preliminary analysis is in qualitative agreement with nonlithium discharges
- λ_q^{mid} scales as ~ I_p^{α}

NSTX **CAK**

- 0 mg Li: $\alpha = -1.6$
- 150 mg Li: $\alpha = -1.1$
- 300 mg Li: $\alpha = -0.4$
- α decreases with increasing lithium deposition
 - λ_q^{mid} appears to be approaching a fundamental limit of 3 4 mm
 - More analysis is needed to understand this trend
- λ_{q}^{mid} has weak to no dependence on P_{heat} and B_{t}
- λ_q^{mid} modestly contracts with increasing $|\delta_r^{sep}|$

Back-up Slides

An integral heat flux width is used to determine the dependence of λ_{α}^{mid} on external parameters from NSTX data

- All data is time averaged over small **ELMs**
- IR thermography measures surface temperature of divertor tiles
- Perpendicular heat flux profile estimated from semi-infinite or finite difference models
- Define integral divertor heat flux scale length, λ_{a}^{div+}

$$\lambda_q^{div} = P_{div}^{out} / \left(2\pi R_{peak}^{div} q_{div,peak}^{out} \right)$$

• λ_{α}^{div} related to characteristic midplane scale length through magnetic flux expansion, f_{exp} : $\lambda_q^{mid} = \lambda_q^{div} / f_{exp}$, where $f_{exp} \equiv \frac{R_{mid} B_{\theta}^{mid}}{R_{exp} \cdot B_{\phi}^{div}}$

♣ A. Loarte, et al. JNM. 266—269 (1999) 587—592

Averaging frames of dual band camera data has minimal impact on interpretation of data

- Frame averaging has a minimal effect on peak heat flux
 - Magnitude of transients are reduced
- Averaging does lead to a slight broadening of the profile
 - Neglecting profiles during fast transients (ie ELMs)
 - 8 12% difference
 - Possibly due to movements in OSP location during averaging
 - No Type V ELMs in this discharge

Data taken at $t_{frame} = 0.621 \text{ ms}$ 50 q_{peak}^{div} (MW/m²) -0.621 ms 40 - 31.1 ms Shot # 141256 30 = 1 MA = 4 MW 20 10 0.2 0.6 0.8 0.4 1.2 Time (s) 20 λ_{q, int}^{div} (cm) 15 10 Transients 0.2 0.6 0.8 1.2 0.4 **N** 1

Time (s)