New results in SOL turbulence modeling of NSTX

J.R. Myra, D.A. Russell, D.A. D'Ippolito, *Lodestar* in collaboration with R. Maingi, J-W. Ahn, *ORNL*, J. Boedo, *UCSD* T. Munsat and Y. Sechrest , *U. Colorado* R. Maqueda, S.J. Zweben, D.P. Lundberg, D.P. Stotler, *PPPL* and the NSTX team

- SOL heat flux width scaling
- turbulence and profiles (probe)
- blob phenomena and GPI
- blob statistics (optical flow)
- zonal flow oscillations

presented at the 2010 NSTX Results Review, Nov 30 – Dec 2, 2010 work supported by DOE grants DE-FG02-02ER54678 and DE-FG02-97ER54392

<u>The SOLT code</u>: physics model

D. A. Russell, et al, Phys. Plasmas 16, 122304 (2009)

 \underline{S} crape- \underline{O} ff- \underline{L} ayer \underline{T} urbulence (SOLT) code

- 2D fluid turbulence code: model SOL in outer midplane
 - classical parallel + turbulent cross-field transport
- evolves n_e , T_e , Φ with parallel closure relations
 - sheath connected, with flux limits, collisional
- strongly nonlinear: $\delta n/n \sim 1 \Rightarrow blobs$
- model supports drift waves, **curvature-driven interchange** modes, sheath instabilities
- flexible sources for n_e , T_e , v_y (maintain edge/pedestal profiles)
- synthetic GPI and probes
- L and H-mode simulation methodologies
 - L-mode: <v_v> from turbulence generated zonal flows
 - H-mode: $\langle v_v \rangle$ includes E×B from imposed E_r well in edge region

Scaling of SOL heat flux width λ_q

- major modeling effort in support of FY2010 JRT
- power (P) scaling of λ_q [J-W Ahn low power ELM-free H-mode shots]
- current (I_p) scaling of $\hat{\lambda}_q$ [R Maingi higher power ELMing H-mode shots]
- Absolute agreement is within modeling uncertainties (factor of 2).
- Scaling:
 - weak positive scaling with P
 - inverse scaling with I_p but λ_q SOLT ~ I_p^{-0.7} and λ_q NSTX ~ I_p^{-2.8}
- midplane turbulence in SOLT explains some, but not all, of observed scaling

shot	I _p (MA)	P(MW)	λ _q NSTX (cm) midplane	λ _q SOLT (cm) midplane
135009	0.8	0.8	0.36	0.30
135038	0.8	1.3	0.50	0.41
128013	0.8	5.8	1.73	0.76
128797	1.2	6.1	0.56	0.58

J R Myra, et al., PSI (2010) and PoP (in press)

Lodestar

Midplane turbulence levels validated by probes and GPI

- probe data available for low power cases
- single and double probe average profile data [J-W Ahn and J Boedo] agree well with SOLT simulation
- fluctuation data [J Boedo] is similar to simulation within scatter
- GPI [R Maqueda] available for high power cases (not shown) validates turbulence levels and scaling for I_p scan

Midplane turbulence in SOLT is the only mechanism for λ_q

Separatrix-spanning convection sets H-mode λ_{α}

- left: density (color palette) and potential streamlines show convective cells and sheared flows. Emitted blobs are trapped by strong sheared flows
- synthetic GPI [n_{D0} D Lundberg, D Stotler] for trapped blob and GPI data [R Maqueda shot #135009]

Lodestar

Optical flow analysis useful for model validation

- Quantitative comparison of code and experimental data requires processing each through the same analysis stream.
- Here use hybrid optical flow and pattern matching velocimetry (HOP-V) [T Munsat and Y Sechrest]
- NSTX \rightarrow Maqueda GPI \rightarrow optical flow $\rightarrow \mathbf{v}(x,y,t) \rightarrow$ blob filter \rightarrow PDFs SOLT \rightarrow synthetic GPI \rightarrow optical flow $\rightarrow \mathbf{v}(x,y,t) \rightarrow$ blob filter \rightarrow PDFs $\rightarrow \mathbf{v}_{E \times B}(x,y,t) \rightarrow$ blob filter \rightarrow PDFs

- HOP-V comparisons of NSTX and SOLT are similar
- blob v_{E×B} is distributed similarly to HOP-V image velocity

D A Russell, et al PoP (submitted)

Zonal flow relaxation oscillations

- SOLT simulations show bursty periods synchronized with zonal flow oscillations.
- qualitatively similar to NSTX observations of quiet periods preceding L-H transition and flow oscillations at ~ 3 kHz [S Zweben PoP 2010]

Qualitative links of SOLT model with experiment

- Turbulence (and blob generation) are greatly reduced in H-modes compared to L-modes
- Strong auxiliary heating power implies increased intense edge activity
- From tens of thousands of GPI images and 100's of code runs: Similar blob phenomena are observed in GPI and SOLT
 - wavy structures and blobs trapped in edge
 - blobs detaching
 - smoke
 - blobs dissipating in near SOL or propagating to wall
 - plasma carried by SOL flow

Quantifying these observations and relationships to L-H mode and SOL width will be part of our future research program

R Maqueda et al APS 2010

Summary

- There are some encouraging points of agreement (both qualitative and quantitative) between SOLT simulations and a number of experimental diagnostics:
 - SOL heat flux width scaling
 - midplane turbulence levels
 - blob statistics
 - zonal flow oscillations
 - blob phenomena
- Both model and data are in a very strong position for future comparisons to expand our understanding of SOL physics