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DUSTT/UEDGE coupled codes

• DUSTT solves coupled dust dynamics 
equations including temporal evolution of 
dust charge, temperature, mass, and 
radiation

• The DUSTT code operates with plasma 
parameters simulated with multi-fluid edge 
plasma transport code UEDGE

• The statistical averaging over an 
ensemble of test dust particles is used to 
obtain dust profiles and impurity source 
from ablated dust

• DUSTT/UEDGE are iteratively coupled for 
self-consistent modeling of dust impact on 
edge plasmas

• Present modeling is limited to 2D 
toroidally symmetrical plasmas
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DUSTT code validation
• The experimental trajectories of 22μm Li dust measured on NSTX 

are compared with the DUSTT simulated ones
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Tungsten dust modeling
• Trajectories of tungsten dust of radius 2.5µm injected in NSTX are 

modeled with DUSTT code
• The dust life time, penetration depth and general dynamics of 

observed dust trajectories are reproduced well with the modeling
using tungsten dust shielding factor ~20
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Modeling of Li dust injection

• NSTX L-mode LSN configuration is 
modeled

• ~20μm radius Li dust is injected in 
the upper outer poloidal position

• Dust hit the plasma with average 
speed ~5m/s and with shifted 
downward cosine angle distribution 
relative to vertical direction

• Divertor plates are assumed to be 
covered with Li film with recycling 
coefficients set at 0.8 for D  and at 
0.5 for Li (low-recycling regime)

• Core D+ density is fixed at 
5.1x1013cm-3

• Core heating power 3MW
• Plasma transport coefficient are fixed
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Dust originated impurities

• Dust injection with rates ~ a few10mg/s can significantly increase 
impurity concentration and radiation power losses in the edge

• Gaseous impurities do not penetrate as deep into the plasma as the 
dust does

• Complete plasma detachment in the inner divertor at ~60mg/s Li 
dust injection rates is developed
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Impact of Li dust on edge 

• The power load to the outer divertor plate is reduced 
• Radial plasma pressure gradient is substantially (up to ~40%) 

reduced in the edge
• Peeling/ballooning stability of the edge plasma may be improved, 

suppressing anomalous transport and ELM formation
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Summary
• The validation of the coupled DUSTT/UEDGE code has been 

performed using 3D dust trajectories measured on NSTX

• It has been shown that dust injection with rates ~ several 10mg/s in 
modern tokamaks can cause significant effects on edge plasma 
parameters, transport and stability

• Injected gaseous impurity do not penetrate into plasma as deep as the 
dust does

• Modeling of tungsten dust injection in NSTX is in progress

• Modeling of different dust injection scenarios for evaluation of
possibility of divertor heat load mitigation in NSTX-U is planned

• Further code development (including plasma recombination on dust
surface, intermittent phenomena) and validation for different dust 
materials is required
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