Coupled modeling of dust and edge plasma transport in NSTX

R.D. Smirnov¹, S.I. Krasheninnikov¹, A.Yu. Pigarov¹, A.L. Roquemore², D.K. Mansfield², C.H. Skinner², T.D. Rognlien³, and J. Nichols⁴

¹University of California, San Diego, CA ²Princeton Plasma Physics Laboratory, NJ ³Lawrence Livermore National Laboratory, CA ⁴Cornell University, Ithaca, NY

FY2010 NSTX Results Review, Boundary Physics December 1st 2010, PPPL, NJ

DUSTT/UEDGE coupled codes

- DUSTT solves coupled dust dynamics equations including temporal evolution of dust charge, temperature, mass, and radiation
- The DUSTT code operates with plasma parameters simulated with multi-fluid edge plasma transport code UEDGE
- The statistical averaging over an ensemble of test dust particles is used to obtain dust profiles and impurity source from ablated dust
- DUSTT/UEDGE are iteratively coupled for self-consistent modeling of dust impact on edge plasmas
- Present modeling is limited to 2D toroidally symmetrical plasmas

DUSTT code validation

The experimental trajectories of 22µm Li dust measured on NSTX • are compared with the DUSTT simulated ones

Experiment	Modeling	Li dust trajectories in NSTX
dust speeds ~10-100m/s	matched for dust sizes 10-20µm	color - experiment
Li dust lifetime ~10ms, some grains can reach separatrix	reproduced with introduction of heat flux reduction factor (~50) approximating dust shielding by ablation cloud	3.0 E NÎ
dust grains with opposite toroidal flight directions are observed, some grains change toroidal direction (curvature ~few cm)	shear plasma flows in SOL with Mach~1 can cause change in toroidal flight direction in near separatrix regions	$2.5 - \frac{1.2 + 1.3 + 1.4 + 1.5 + 1.6}{1.2 + 1.3 + 1.4 + 1.5 + 1.6}$
,		R, m

Tungsten dust modeling

- Trajectories of tungsten dust of radius 2.5µm injected in NSTX are modeled with DUSTT code
- The dust life time, penetration depth and general dynamics of observed dust trajectories are reproduced well with the modeling using tungsten dust shielding factor ~20

4

Modeling of Li dust injection

- NSTX L-mode LSN configuration is modeled
- ~20µm radius Li dust is injected in the upper outer poloidal position
- Dust hit the plasma with average speed ~5m/s and with shifted downward cosine angle distribution relative to vertical direction
- Divertor plates are assumed to be covered with Li film with recycling coefficients set at 0.8 for D and at 0.5 for Li (low-recycling regime)
- Core D⁺ density is fixed at 5.1x10¹³cm⁻³
- Core heating power 3MW
- Plasma transport coefficient are fixed

Configuration of modeled Li dust injection

Dust originated impurities

- Dust injection with rates ~ a few10mg/s can significantly increase impurity concentration and radiation power losses in the edge
- Gaseous impurities do not penetrate as deep into the plasma as the dust does
- Complete plasma detachment in the inner divertor at ~60mg/s Li dust injection rates is developed

Impact of Li dust on edge

- The power load to the outer divertor plate is reduced
- Radial plasma pressure gradient is substantially (up to ~40%) reduced in the edge
- Peeling/ballooning stability of the edge plasma may be improved, suppressing anomalous transport and ELM formation

Summary

- The validation of the coupled DUSTT/UEDGE code has been performed using 3D dust trajectories measured on NSTX
- It has been shown that dust injection with rates ~ several 10mg/s in modern tokamaks can cause significant effects on edge plasma parameters, transport and stability
- Injected gaseous impurity do not penetrate into plasma as deep as the dust does
- Modeling of tungsten dust injection in NSTX is in progress
- Modeling of different dust injection scenarios for evaluation of possibility of divertor heat load mitigation in NSTX-U is planned
- Further code development (including plasma recombination on dust surface, intermittent phenomena) and validation for different dust materials is required