

Radiative divertor with impurity seeding in NSTX

College W&M **Colorado Sch Mines** Columbia U CompX **General Atomics** Johns Hopkins U Lodestar Nova Photonics New York U **Old Dominion U Princeton U** Purdue U Think Tank, Inc. **UC Davis UC** Irvine **U** Colorado **U Illinois U** Maryland **U** Rochester

INFI

LANL

LLNL

MIT

ORNL

PPPL

PSI

SNL

UCLA

UCSD

U Washington

U Wisconsin

V. A. Soukhanovskii (LLNL) Acknowledgements: **NSTX** Team

NSTX Results Review Princeton, NJ Wednesday, 1 December 2010

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA. Frascati CEA, Cadarache **IPP, Jülich IPP, Garching** ASCR, Czech Rep **U** Quebec

Use of impurity seeding provided an opportunity to study NSTX-U-relevant radiative divertor

- Radiative divertor experiments used D₂ injection to demonstrate peak heat flux reduction in NSXT with carbon radiation
- A significant divertor peak heat flux reduction will be needed in NSTX-U, probably not possible with low Z impurities
- Reduced density LITER operation reduces radiated power due to extrinsic impurity seeding
- Control aspects of radiative divertor
 - Identify divertor quantities that can be monitored and used as actuators for feeding into PCS to regulate impurity injection

First demonstration of divertor peak heat flux reduction with impurity seeding in NSTX

8

n_e (x1e19 m^-3)

• $I_p = 0.9 \text{ MA}, P_{NBI} = 4 \text{ MW}$

Lawrence Livermore National Laboratory

- δ=0.85, κ=2.3, f_{exp}~20
- *P*_{SOL} = 3 MW
- Marginal performance degradation

Divertor peak heat flux reduced by up to 80 %, clear signs of partial detachment observed

NSTX Lawrence Livermore –

Divertor profiles confirm partial strike point detachment with increased radiation

5 of 8

Radiative divertor with CD₄ seeding appears to reduce divertor heat flux as good as PDD with D₂

• Radiative CD₄ divertor (^{*}): P_{SOL} ~3-4 MW, q_{peak} ~0.5-1.0 MW/m²

V. A. Soukhanovskii et. al, PoP 16, 022501 (2009)

Snowflake divertor with CD₄ seeding leads to increased divertor carbon radiation

- Snowflake divertor (from 0.6 ms)
 - Peak divertor heat flux reduced from 4-6 MW/m² to 1 MW/m²
- Snowflake divertor (from 0.6 ms)
 + CD₄
 - Peak divertor heat flux reduced from 4-6 MW/m² to 1-2 MW/m²
 - Divertor radiation increased further

Conclusions and Future plans

- First demonstration of impurity-seeded radiative divertor provided very encouraging results
 - Marginal core plasma performance degradation
 - Significant peak heat flux reduction
- Continue with these studies in FY2011-2012
 - Optimize CD₄ PDD performance for 1.2 MA, 6 MW
 - Develop feedback control of radiative divertor
 - Combine radiative divertor with snowflake and X-divertor
 - Demonstrate and optimize for NSTX-U shape and performance

Impurity radiation role is to be clarified in radiative divertor experiments

- It is marginally possible to radiate the necessary fraction of q_{\parallel} with intrinsic carbon in NSTX
- Lithium and helium can play an important role in divertor power balance
 - Helium energy expensive (first I.P. 24.6 eV), radiates at 1-10 eV
 - Lithium highly radiative at $T_e < 1-3 \text{ eV}$
- In PDD experiments in FY 2006-2008
 - Radiated power was due to D, He, Li, C
 - He and C were main contributors

$$q_{\parallel} = -\kappa_0 T_e^{5/2} \frac{\partial T_e}{\partial x}$$
$$\frac{\partial q_{\parallel}}{\partial x} = -n_e n_z L_Z(T_e)$$

Lawrence Livermore

V. A. SOUKHANOVSKII, NSTX Results Review 2010, 11/30 -12/01/2010, Princeton, NJ

Previous NSTX radiative divertor experiments with neon demonstrated that the divertor was too cold for efficient neon radiation

NSTX Lawrence Livermore