

Supported by

Macroscopic Stability TSG 2010 Mini Results Review

College W&M **Colorado Sch Mines** Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL I odestar MIT Nova Photonics New York U Old Dominion U ORNL PPPL PSI Princeton U Purdue U Sandia NL Think Tank, Inc. UC Davis UC Irvine UCLA UCSD **U** Colorado **U** Marvland **U** Rochester **U** Washington **U** Wisconsin

v1.1

S.A. Sabbagh Columbia University

J.E. Menard, J.-K. Park PPPL

NSTX Macroscopic Stability Topical Science Group

NSTX Mini Results Review

September 30th, 2010 Princeton Plasma Physics Laboratory

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kvoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA. Frascati CEA. Cadarache **IPP, Jülich IPP**, Garching ASCR, Czech Rep U Quebec

NSTX R10-1 Milestone

- Assess sustainable beta and disruptivity near and above the ideal no-wall limit
- Priorities (summarized in two lines)
 - Understand active and passive mode stabilization physics to improve mode control and assess sustainable beta and disruptivity near and above the ideal no-wall limit (Milestone R10-1)
 - Study mode-induced disruption physics and mitigation, including halo current generation and the properties of the thermal quench, and 3-D field effects including plasma viscosity
- All XPs serve NSTX Milestones, ReNeW Thrust 16, ITPA joint XPs, ITER support
 - □ 7 MHD ITPA tasks addressed (see http://nstx-forum-2010.pppl.gov/macroscopic_stability.html)
 - Cross-cutting tasks outside MHD ITPA also addressed by MHD TSG

Macroscopic MHD TSG 2010 XPs – Status 9/30/10

<u>Author</u>	Proposal ⁻	<u>Fitle</u>		NSTX Forum	Allocations /	Priority	L	<u>XP / Status</u>
J. Park	Error field th	reshold study at	high-beta - reduced	I torque	1.0	1	0.50	XP1018
Menard	Effects of no	on-res. fields on l	ow/moderate beta lo	ocking threshold	1.0	1	0.50	
Buttery	Error field th	reshold scaling i	n H mode - next ste	p devices	1.0	1	0.50	XP1032
Gerhardt	Optimization	of beta-control	- disruptivity		1.0	1	0.50	XP1019
Berkery	Determinatio	on of, navigation	through weak RWM	1 stability Vf(psi)	1.0	1	1.00	XP1020
Reimerdes	Measuring r	esonance freque	ncies relevant for R	WM stabilization	1.0	1	-	
McLean/Gerhardt	Halo current	study w/ extend	ed diagnostic capat	oility + LLD	1.0	1	1.00	XP1021
Y-S. Park	RWM state-	space control in	NSTX		1.0	1	1.00	XP1022
Sabbagh	Optimized F	WM feedback fo	r high <bn>pulse a</bn>	t low n and li	1.0	1	1.00	XP1023
Gerhardt	Comparison	of RFA suppres	sion using different	sensors	1.0	2	1.00	XP1060
Buttery	2/1 NTM sta	bility (and EF se	nsitivity) vs q profile		1.0	2	0.50	XP1061
Sabbagh	NTV physics	s: low collisionali	ty and maximum vai	riation of wE	1.0	2	0.50	XP1062
Berkery	RWM stabili	zation by energe	tic particles		1.0	3	1.00	
J. Park	Resonant Fi	eld Amplification	of n=2 and n=3 app	olied fields	1.0	3	1.00	
La Haye	Effect of rota	ation on amplitud	e of 3/2 NTMs		1.0	3	1.00	
Y. Park	Passive/acti	e stability of kink,RWM, Vf control: KSTAR Joint 1.0 3				1.00		
Sabbagh	Global MHD	/ ELM stability v	s edge current, n*q	ped, edge nu	1.5	ITER	0.50	XP1031
Sontag	Peeling-ball	ooning stability a	nd access to QH-m	ode in NSTX	1.5 ITER 0.5 ⁴			XP1063
Gerhardt	Optimization	of beta-control	XMP		0.5	0.5 CCE 0.50		
Menard	Influence of	LLD-induced co)-induced collisionality, profile on ST stability 1.5 CCE 1.50				XP1055 (team)	
Goldston	RF Amplifica	ation of EHOs in	Lithium-pumped EL	M-Free Plasmas		CCE 1.00 XP1068		
Croup review Team review VD signoff Started Near Complete								
Group revie				Slaneu		mpieu		Jompieleu

XP1018 (only Tier 1 XP without run time) - extend locked mode error field threshold study to moderate / high beta, low input torque RF plasmas

• The best parametric scaling with total resonant field:

$$\frac{\delta B_{21}}{B_{T0}} \le 0.9 \times 10^{-4} \left(n [10^{19} \, m^{-3}] \right)^{1.1} \left(B_{T0}[T] \right)^{-1.4} \left(R_0[m] \right)^{0.61}$$

- Reliable error field threshold scaling needed for ITER
- Past XPs (903, 915) investigated error field threshold
- Complimentary to XP1032 Error field threshold scaling in H-modes (Buttery)
- Presently on the run schedule if RF can support (2MW+), OR run ohmic if RF can't support

XP 1032 Goal: Obtain Scaling of Error Field Threshold in H-modes to Predict Future Devices

- Error field threshold dictated by a torque balance
 - When electromagnetic torque overcomes inertia & viscosity
 - Shielding response bifurcates to resonant widespread tearing

Scalings obtained for Ohmic regimes, but H mode may differ:

- Proximity to NTM: weak Δ' stability?
- Underlying rotation may scale differently from Ohmic
- Experiments to measure principal scalings with B_T and density
 - Infer machine size scaling from dimensional invariance:

 $\textbf{B}_{\text{pen}}/\textbf{B}_{\text{T}} \propto \ \textbf{n}^{\boldsymbol{\alpha}_{n}} \ \textbf{R}^{\boldsymbol{\alpha}_{\text{R}}} \ \textbf{B}^{\boldsymbol{\alpha}_{\text{B}}} \ \textbf{q}^{\boldsymbol{\alpha}_{q}}$

XP1032 Experiment Summary

Built on 2009 shot (shown)

- - Worked well at 3 different B_t values
 - Avoided need to repeated retuning of discharges to reach target
- Lithium to control ELMs & conditions
 - Avoid as tearing trigger
 - Required more this year: 150mg/shot

n=1 field ramps to trigger mode

- ✓ Scan 3 B_T at constant q₉₅
- Adjustments to field ramp and gas to compensate for density & q₀ variation

XP1032 First results: A significant dependence with B_t, possibly partly explained by density variation

□ Full B_T range explored – lowest, highest & middle

0.35T/0.7MA to 0.55T/1.1MA

Wide variation in thresholds

- β_N, density, q profile play a role in changing threshold & varied somewhat across points taken
- Requires careful analysis to strip out – *data taken to enable this*
- Some reasonably matched points show preliminary trend
 - Well fitted by offset linear or quadratic fits
 - **\Box** But possible underlying density dependence (lower with B_t)
- Good scan obtained to pull out principal scalings, analysis underway and should be able to pull out main trends

XP-1019 Developed β_N **Control**

- □ XMP commissioned the algorithm, including a new PID scheme compared to 2009.
 - Thanks Mike and Egemen for useful suggestions.
- □ Completed XP over two 1/3 day runs.
- $\ \ \, \square \ \ \, \beta_N \text{ control system is ready for use as desired for XPs.}$
 - Use is encouraged, but you should talk to SPG about setting it up, and whether extra complication would really be worth it for your XP.

Example

- High-κ discharge appropriate for ASC or MS performance XPs
- Discharges disrupts with high-β
 MHD at 4 & 6 MW
 - 4 MW case further evidence of the Berkery weak RWM stability rotation state?
- Discharges with β_N control last considerably longer.
- Intermediate β_N was apparently optimal.

XP1020 explored RWM stability with ω_{ϕ} and EP fraction, with RFA measurements, for comparison to kinetic theory

- Two half-days 4/15 and 8/19:
- Second day successful in low li target.
- ω_{ϕ} slowed with n=3 magnetic braking for various EP fractions (I_p, B_t scan)
- Weak stability region at intermediate ω_{ϕ} shows in RFA?
- Plasma can survive it (left), or not (below).
- Further analysis with MISK must be performed.
- Many shots with long, slow, rotation decreases and many RFA periods were obtained.

XP1021 Halo curent study - accomplishments in 2010

- Excellent afternoon on 8/4/2010, shots 139529-139557, and morning of 8/27/2010, shots 140438-140461
- Developed 2 MW inner-wall limited L-mode shot with reliably triggered VDE using an 80 V downward bias on PF3.
- □ Performed scans of $600 < I_p < 800$ kA and $0.35 < B_t < 0.55$ T ($0.45 < I_p^2 / B_t < 1.83$).
- Injected power/stored energy scan: P_{NBI} at 0.0, 0.3, 1.0, 2.0, 3.0, and 4.0 MW.
- Repeat cases identical to previous years to test Li effect on halo currents, home in on the cause of the reduced HC compared to 2009

XP1021: Halo current/disruption study results to date suggests significant role of lithium

- Found halo current magnitude to be significantly less than found in previous conditions of XP833 (~1/2), possibly due to presence of Li.
- □ Linear trend in HC magnitude vs. B_t/I_p^2 but offset from 2009
- Extremely high surface heat fluxes through disruption with dual-band fast IR camera (1.6 KHz, 10 us integration time); estimated at >100 MW/m² (Ahn/McLean)
- Structure observed in I_{sat} of high density Langmuir probe array during disruptions, ripe for T_e measurements (Jaworski)
- Full fast camera view of lower divertor will allow estimation of Li and C fluxes from the floor through disruption (Scotti/Roquemore)

- Applied n=1 fields with two different phases.
 - Unable to prevent halo current pattern from rotating with n=1 fields
 - Not explored further in 2010; further study may lead to recommendations for 2011

Fourier Analysis Confirms That the Halo Current Pattern Is Indeed Rotating

(() NSTX

NSTX Mini Results Review 2010 (S.A. Sabbagh for the Macrostability TSG)

XP1021: Unable To Prevent Halo Current Pattern From Rotating With n=1 Fields

1.00 Deliberate VDEs in L-140452 140453 140454 140455 0.75 P (MA) 0.50 mode 1 source shots 0.25 0.00 Large halo current 50.0 pulse proceeding and during disruption. 350 Phase continues to 262 Amplitude Phase rotate... 175 88 ...despite >1 kA of n=1 n 1.6 RWM coil current. 1.2 0.8 Phaserield ITER would like to 0.4 0.0 control HC rotation to 360 270 avoid mechanical n=1 Field 180 90 resonances...not an 0 0.325 0.331 0.35 0.337 0.344 encouraging result. time (sec)

XP1022 RWM State Space Control in NSTX – maiden voyage of new, versatile controller

New NSTX RWM state-space controller, implemented by Columbia U. and PPPL

 Expandable to accommodate new SPA unit, independent RWM coil control, n > 1

First run

- Control of resonant field amplification of both DC and AC applied n = 1 fields examined
- primary controller parameters were varied
- Variations in mode control were observed as feedback phase was varied
- Long pulse I_p = 1MA target plasmas at low I_i and high normalized beta were produced
 - "record values" achieved at I_p = 1MA analysis ongoing
- First application of such a controller in low collisionality, high beta plasmas
 - Additional run time needed to fully establish mode control physics (0.5 day)

RWM B_p UPPER Sensor differences

WNSTX

Offline testing: RWMSC observer with 2 states reproduces initial sensor response to mode, 7 states improves match overall

Reasonable match to all sensors during RWM onset, large differences late in time
 Better match to sensors late in time, some mismatch to 90 degree sensors (n = 2?)

Black: PID Red: offline RWMSC

XP1022 RWM state space controller sustains an otherwise disrupted plasma caused by DC n = 1 applied field

n = 1 DC applied field

- Simple method to generate resonant field amplication
- Can lead to mode onset, disruption

RWM state space controller sustains discharge

- With control, plasma survives n = 1 pulse
- n = 1 DC field reduced
- Transients controlled and do not lead to disruption
- NOTE: initial run gains NOT optimized

XP1022 Feedback phase scan for RWM state space controller shows favorable/unfavorable settings

Feedback phase scan

- 8 settings taken, two examples shown
- Favorable settings found
 - long pulse, high β_N
 - sustained rotation
- Significant stability performance reached with RWMSC on
 - Highest pulse length for I_p = 1 MA plasma
 - High β_N exceeding 6.4 at $I_p = 1$ MA
 - Record β_N/l_i exceeding 13
 - NOTE: initial run gains NOT optimized
 - gains should be increased, based on comparison to PID controller results

XP1023: Optimized RWM feedback control for high <β_N>_{pulse} at low collisionality and I_i

- Motivation / overall goal
 - Next-step ST devices (including the planned upgrade of NSTX) aim to operate at plasma collisionality and li below usual NSTX levels
 - Improve reliability of RWM stabilization at low I_i (and all plasmas)
 - Past low I_i operation showed significantly higher RWM activity, lower β_N limit, at reduced I_i
- Progress
 - **Generated reduced I_i target plasmas, unstable RWMs without V_{\phi} reduction**
 - New optimal settings for n = 1 RWM control have changed significantly
 - Due to new, improved "miu" mode ID algorithm, the low I_i plasma, B_r spatial phasing (or all)
 - Feedback on B_r sensors works (and works well); feedback phase setting very different than found in XP802, etc.
 - most likely due to the OHxTF compensation of B_r in the miu algorithm
 - Generated many good shots: low I_i (~ 0.45) at high β_N with very high β_N/I_i of 12 13+
 - Both B_p and B_R sensors now used in feedback
 - Gain and feedback phase scans made for both B_p and B_R sensors
 - "Optimal" settings found (now running in fiducial / similar high delta shots very well)
 - FAR GREATER control than for past shots (I_p = 0.8 and 1.0 MA plasmas, shots repeated)
 - I_p = 1.1 MA targets have not generated such high performance (yet), did generate RWMs
 - Shots presently limited by loss of low I_i state, rather than RWM instability
 - Great deal of physics here edge cooling e.g. due to low frequency (~ 200 Hz) edge activity
 - Completed XP by completing low plasma rotation scan low plasma rotation accessed (9/24/10)

XP1023: Changing B_p sensor feedback phase around 180 degrees led to long-pulse, low I_i , high β_N/I_i

XP1023: RWM B_R sensor feedback reduces n= 1 radial error field significantly

- feedback gain scan taken on low l_i target plasmas Highest gain attempted (1.5) most favorable
- B_r feedback constrains slow (~ 10 ms) n = 1 radial field growth
 - **B** $_{r}^{n=1} = 9G$ consistently disrupts plasma

```
B, Gain = 1.0
B, Gain = 1.25
B, Gain = 1.50
```

XP1023: RWM B_R sensor n= 1 feedback phase variation shows clear settings for positive/negative feedback

- B_r sensor feedback phase scan shows superior settings
 - Result clarified significantly by new MIU algorithm OHxTF compensation
 - Positive/negative feedback produced at expected phase values
 - 180° negative FB
 - □ 0° positive FB
 - n=1 growth/decay of other settings bracketed by 0°, 180° settings

XP1023: Use of combined RWM sensor n= 1 feedback yields best reduction of n = 1 fields / improved stability

- Varied levels of n
 > 1 field correction
 - n = 3 DC error field correction alone more subject to RWM instability
 - n = 1 B_p sensor fast feedback sustains plasma
 - Addition of n = 1 B_R sensor FB prevents disruptions when amplitude reaches ~ 9G, better sustains rotation

XP1031 MHD/ELM stability dependence on thermoelectric current, edge J, v

Goals/Approach

- Test expectations ELM stability theory considering changes to edge toroidal current density, field-aligned thermoelectric current, and collisionality
 - 1) Generate target
 - 2) Vary TE current connection length at fixed 3D field (Vary x-point height; DRSEP)
 - 3) Vary 3D field amplitude
 - 4) Vary toroidal current density near the edge
 - 5) Vary collisionality with LLD

Present data

\Box Ran many shots on list (except reduced v); need to examine data in detail

- X-point height and DRSEP varied separately (tricky for operators early on)
 - ELMs change with variation much detail to sort out here
- Target reproduced with ELMs induced by 3D field
- 50 Hz n = 3 field primarily used, DC field tried but led to rotation issues
- Scrape-off layer currents detail measured by LLD shunt tiles / Langmuir probe arrays
 e.g. n = 1 clearly seen during initial part of ELM, changing to n = even
- Evidence of ELM stabilization when positive edge current applied (constant B_t)
- XP nearly completed
 - **Q** 2 hours requested to complete I_p ramp scan with 3D fields

XP1031: Evidence of ELM stabilization with positive current ramp + 3D field during ELMing phase in medium triangularity plasma

- ELMs with positive current ramp
 - Due to higher triangularity target, different q profile (possible resonance effect)?
 - Due to stronger n=3 field in more recent shot?

(plasma in H-mode)

24

H-L back-transition

XP1062 started: Verify NTV physics for next-step devices (NSTX-U to ST-CT / ITER), and support NSTX rotation control system design

Motivation

Verify neoclassical toroidal viscosity physics for next-step devices (NSTX-U to ST-CT / ITER), and to support design of NSTX rotation control system

Goals / Approach

- $\hfill\square$ Compare magnetic braking with largest variation of v_i^* using LLD
 - $\bullet\,$ Target a comparison of two conditions: low vs. high $\nu_i^{\,\star}$, favor low $\nu_i^{\,\star}$ condition
 - Compare to past braking XPs if high v_i* condition is difficult to produce
 - RESULT: NTV braking detail measured at lower v_i^* by at least a factor of 2, due to lack of prefill gas in 3 braking shots
- Generate greater variation of key parameter $(v_i/\epsilon)/|nq\omega_E|$
 - Concentrate on low ω_{E} to further examine superbanana plateau regime/theory
 - RESULT: NTV braking brought plasma to low rotation (< 7kHz core, < 2kHz ~ q=2) – increase in braking torque observed at low ω_E, analysis continues
- Determine NTV offset rotation
 - Standard approach: attempt to observe offset by operating at near-zero ω_{ϕ} (might be easier with LLD)
 - RESULT: Further data taken no indication of a large NTV offset rotation (< 1kHz)
 - Consider new approach using RF (based on RF XPs from 2009) not yet run!
 - Generate ω_{ϕ} with RF at highest T_i, W_{tot} possible, diagnose similar to Hosea/Podesta 2009
 - Repeat for different *initial* values of n = 3 braking field, determine of initial ω_{ϕ} changes

SXR camera system on NSTX upgraded to capture full-shot data at speeds up to 125 kHz (analysis shown in movie)

Fast tangential SXR camera

- Midplane, full-radius imaging
- Remotely selectable pinholes (2 8 cm spatial resolution) & filters

PSI5 CCD replaced with Phantom CMOS

	PSI5 (CCD)	Phantom 4 (CMOS)	Phantom 7 (CMOS)
Max Frame Rate	500 kHz (64 x 64)	58 kHz (64 x 64)	121 kHz (64 x 64)
Exposure	Fixed by fps	Selectable	Selectable
Max frames	300	65k	200k
Readout noise	20e RMS	Probably larger	Probably larger
Quan Eff (540 nm)	50%	22%	35%

D. Battaglia