

Advanced Scenarios and Control 2020 "mini" Results Review

College W&M **Colorado Sch Mines** Columbia U CompX **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U Old Dominion U ORNL PPPL PSI **Princeton U** Purdue U SNL Think Tank, Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Washington **U Wisconsin**

S.P. Gerhardt, M. G. Bell, E. Kolemen ASC TSG Leaders

> Contributions from: J.M. Canik, J.E. Menard

> > Sept. 30th, 2010

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U **NIFS** Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache **IPP. Jülich IPP, Garching** ASCR, Czech Rep **U** Quebec

ASC Activities in 2010

- Developed the LLD target configuration
- Run 8 XPs.
 - XP-1003: X-point height and OSP control (Kolemen et al.)
 - XP-1027: Sub-threshold RMP for impurity reduction (Canik, et al.) [ITER Support]
 - XP-1064: Enhanced Pedestal H-modes (Canik, et al)
 - XP-1004: Early error field correction (Menard et al.)
 - XP-1058: Squareness optimization (Kolemen, et al.)
 - XP-1005: Modification of early discharge evolution for impurity reduction (Menard et al.)
 - XP-1025 Combined vertical jogs & RWM for ELM Pacing (Canik, Loarte,) [ITER Support]
 - XP-1006: Development of high–f_{NI} discharges with reduced impurities. (Gerhardt et al.)

Progress on Some Performance Metrics in 2010

2010 2009 2008 2007 2006 2005 2004 2003 2002

() NSTX

3

XP-1027: Impurity Screening with 3-D Field Pulses J.M. Canik, R. Maingi

XP-2027: 3D field pulses below threshold for ELM-triggering ineffective for impurity screening

10

- Response to n=3 field observed in divertor D_{α} even when pulse is too brief or low amplitude to trigger ELM
- 3D field optimized for sub-threshold pulses
 - Maximize n=3 amplitude, duration while avoiding large ELMs
- Without ELMs, particle expulsion insufficient for impurity control
 - No dramatic impact on P_{rad} or carbon inventory evolution

Direct ITER Support

Canik, et al.

XMP-66: Optimization of the 4 Strike Point Controller E. Kolemen, D. Mueller

6

• Previous Year: Inner Strike Point Control

- The OSP controller kept the controller at requested position but problems during the transition
- During the transient phase of the discharge, equilibrium bifurcated to a nearby solution with a low X-point.
- Algorithm was jumping from one solution to the other one.
- To make more stable plasma: Added inner strike point controller.

🔘 NSTX

• Improvement Need: Drsep Drifts When SP is Controlled

•Control Dr_sep drift via Xpoint controls.

• If we can control both upper and lower X-point, drsep can be kept constant.

• XMP 66: Improvements for Shape Control

- Control four strike point controllers with PF1AU, PF1AL, PF2U, PF2L
- Optimize/Tune PID gains.
- Added integral gain for PF3 coils.
- Scanned lower outer SP from 45 to 80 cm.
- Control hand-off (transition) was manually done.
- Smooth PF coil was achieved.
 - The developed shot was used successfully in many experiments (>100 shots).

•

• Drsep Drift is Avoided with Improved Control

- Previously: roblems with the drsep drifting to zero when SP control is on (single SP control).
- Control of both upper and lower X-point means that drsep can be kept constant.

XP-1003: Combined OSP Radius and X-Point Height Control E. Kolemen, D. Mueller

• XP 1003: Relay Feedback Automatic Control Tuning Used For Combined OSP Radius and X-Point Height Control

•The relay-feedback control diagram.

Relay-feedback system identification

•TABLE I. THE ZIEGLER-NICHOLS TUNING METHOD.

- Developed the combined
 X-point height strike point
 radius control
- Tuned by using Relay-Feedback.
- Do sequential tuning: first one controller then the other.
 - First OSP controller.
 - Then XP Height controller.
 - Then OSP again...
 - Then XP Height again...
 - Then...

XP 1003: X-point Height / Strike Point Control Achieved

FFITO2

.......

- Achieved <1 cm X-point height error and <2 cm strike point radius error.
- These shots were used in XP
 1041a (LLD Autoactivation)
- There can be transient issues when controller is turned on... could be improved with more effort.

5

241000

396

139396 0.232000

XP-1004: Early Error Field Correction J. E. Menard

XP-1004: Low density plasmas with and without early EFC show early EFC increases rotation 10-20% for t=120-180ms

- Delay of early H-mode by reduced early fueling reduces density by 30-40% at t=0.2s (vs. reference)
 - Similar to what typically happens with increased LITER evaporation
- Additional EFC <u>phase</u>, amplitude scans (in 2011) might be able to further increase rotation at reduced density.

20

15

10

5

0

-5

-10

kНz

Plasma current

XP-1058: Effect of PF-4/Squareness on High Performance Plasmas E. Kolemen, D. Mueller

• XP 1058: Effect of Squareness/PF4

- Shown that PF4 can compensate for PF5.
 - Important for NSTX-Upgrade
- Used PF4 in
 - Preprogrammed mode
 - Feedback mode to control squareness.
- Shots with PF-4 appeared to have good confinement, maybe lower β-limit?
 - Rotation damping appeared strong (RWM control problem?)
 - Need MSE constrained reconstructions for no-/with- wall stability analysis.
 - TRANSP runs for confinement assessment

• XMP Control Results: PF4 Initial Squareness Control

- Change squareness request while PF4 control on with new segment.
- Good control with no bias
 - PF3 on the other hand has bias due to controlling more than just squareness (and not having integral gain)
- Below is a test where we changed the squareness wildly and PF4 responded well.

•The ISOLVER simulated effect of varying PF4 from -10 kA to +10 kA on the plasma boundary. And the Control Segment for

PF4 Squareness control performance. Shot 139251

sauareness.

XP-1064: Development of Long-Pulse EPH Mode Plasmas J.M. Canik, R. Maingi, S.P. Gerhardt,...

First EPH Day Experiments Tried to Use n=3 Pulses, then Tried to Optimize an SGI+Current Ramp Scenario

- XP Goals: trigger EPH, extend with advanced control techniques
 - Lithium, SGI to facilitate
 - Triggered ELMs (w/ n=3 field) to initiate
 - β, RWM feedback to extend
- Triggering of ELMs with 3D fields did not initiate EPH
 - Did produce high confinement phases following ELMs ($H_{98ipby2} \sim 1.15$), but edge profiles do not indicate EPH
- With SGI fueling, EPH was observed during I_p ramp
 - Unable to extend into flat-top (adjusted
 - I_p, B_t , did not attempt β control this day)

Second EPH Try Attempted To Use β_N Control To "Catch" EPH Mode

- Natural EPH phases commonly attained at reduced q₉₅
 - No SGI or n=3 triggers used
 - Occurred (early) in flat-top
- β-feedback control attempted to extend EPH
 - Aggressive feedback parameters (gain and target beta) successful in rapidly dropping power following transition
 - Early disruption avoided, but second ELM ended EPH.
 - Possible path forward: lots of Li to avoid all ELMs, trigger a single ELM and EPH, use β_N control to grab and sustain configuration

XP-1005: Effect of Up/Down Magnetic Balance on Impurity Accumulation

J. E. Menard

ΔR_{SEP} change from -7mm to 0 reduces impurity confinement and/or generation and reduces C Z_{eff} by ~1

•Like 2009 result, size of H-mode C impurity "ear" near t=0.3s influences late Z_{eff}

() NSTX

XP-10XX: High β_P Discharge Development (Reduced Impurities and Plasma Current)

S.P. Gerhardt, et al.

Overview

- Goal was to take best high- β_P shots from 2009, & use impurity reduction techniques to reduce Z_{eff} .
- Tried three things:
 - dr-sep scans
 - ELM triggering with RMP
 - Divertor gas puff (not in this presentation)
- None were clearly successful in reducing impurities
- Low I_P part of the XP that is not yet finished.

Shape Similar to Last Year

2010 Mid-Run Assessment, ASC (Gerhardt)

dR_{sep} Scan Alone Did Not Show Any Improvement in Performance (Always Near DN)

() NSTX

Worked To Bring The dR_{Sep} Ramp as Early as Possible

NSTX

2010 Mid-Run Assessment, ASC (Gerhardt)

RMP Pulses Were Not Able To Trigger ELMs In This Scenario (I)

RMP Pulses Were Not Able To Trigger ELMs In This Scenario (II)

Why Didn't ELM Pacing Work?

- Too much lithium?
 - Were using 300 mg/shot, which is a lot more than previous tries at this.
- Strong shaping?
 - Even more biased down shots didn't have triggering.
- Lower current?
 - Maybe
- Plasma to far from coils?
 - Previous triggering experiments used a ~10 cm outer gap, this XP was ~15 cm.

Almost Matched the 2009 Best Shot, No Improvements Compared to them.

2010 Mid-Run Assessment, ASC (Gerhardt)

XP-10XX: ELM Pacing Through Combined Vertical Jogs and RMP

J.M. Canik, A. Loarte, S.P. Gerhardt,...

VJ+RMP Demonstrated to Work, But Physics Study is Largely Incomplete

- XP Goal: test if combining vertical jogs and n=3 field can trigger ELMs at reduced jog size, field amplitude
- First run provided proof-ofprinciple
 - Jogs alone: no/few ELMs
 - Jogs + n=3: several ELMs
 - n=3 alone: fewer ELMs
- Second run had trouble with L-H transition timing
 - Largely repeated results from first day: below threshold jogs made ELMy with n=3 field
 - Shot list not completed

Note on ASC Tasks For Final Month

- Some cleanup work on beam XPs:
 - XP-1058: Try positive squareness in XP-1058
 - XP-1006: Try reduced I_P targets for higher f_{NI} . (1/2 day)
- Try to start 2 XPs
 - XP-1071: Development of high aspect ratio and elongation scenarios.
 - Supports PPPL "Pilot Plant" study, various FNS options, NSTX-U.
 - XP-1007: HHFW Heating in H-mode.
 - Direct contribution to ASC "Low Collisionality" Milestone in 2011.
 - Tests HHFW drive impurity reduction (PAC request).

