

Supported by

Transport and Turbulence TSG Results Review

College W&M **Colorado Sch Mines** Columbia U Comp-X General Atomics INL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics **New York U Old Dominion U** ORNL PPPL PSI Princeton U Purdue U SNL Think Tank, Inc. UC Davis **UC** Irvine UCLA UCSD **U** Colorado **U** Maryland **U** Rochester **U** Washington **U Wisconsin**

Howard Yuh, TSG Leader Stan Kaye, TSG Deputy Leader Taik-Soo Hahm, Theory & Modeling

> FY10 NSTX Results Review Sept 30, 2010

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kvushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA. Frascati CEA, Cadarache **IPP, Jülich IPP, Garching** ASCR, Czech Rep U Quebec

XP1037: Study of the Parametric Dependence of High-k Turbulence in NSTX (Y. Ren et. al.)

- A Factor-of-Three Local Collisionality Scan Was Achieved
- T_e / B^2 was well maintained from R=130-145 cm: local v_{e^*} was varied with constant $\frac{1}{2_e}$ and \overline{T} .
- I_p and B_T were varied with a constant ratio to keep constant q.
- Neutral beam power was adjusted to have a better match in T_e profile.
- The scan was carried out with (I_p(MA), B_T (kG))=(0.7,3.5), (0.9, 4.5) and (1.1, 5.5).
- (1.1 MA, 5.5 kG) shots have much high density and Z_{eff} and are not used.
- Factor of three change in v_{e*} is achieved.
- ρ_s , n_e and q have only small variations against $v_{e^{\star}}$.

High-k Turbulence Power Seems to Increase as ve* Decreases

- T_e gradient variations are up to 30%.
- Variation in magnetic shear is larger, up to 90%.
- Variation in ExB shearing rate can be up to factor of two.

- High-k turbulence power appears to increase as v_{e^*} decreases at $k_\perp \rho_s > 9$.
- Same relationship may hold for $k_{\perp}\rho_s < 9$ if ExB shearing stabilization is taken into account.
- Larger variation in v_{e^*} is important to pin down the relationship.

FY2010 Results Review / H. Yuh / Sept 30th, 2010

XP1029: Dependence of P_{LH} on the X-point radius (D. Battaglia et.al.)

- XGC-0: thermal ion loss at the X-point increases with R_X
 - Increases E_r and E_r shear
 - May result in lower power threshold
- Two shapes reproduced with low and high lithium depositions

– Measured P_{LH} vs R_{χ} to compare to model

FY2010 Results Review / H. Yuh / Sept 30th, 2010

Initial results suggest dependence of P_{LH} on R_X

- Values computed using TRANSP
 - P_{OH} ~ 0.3 MW, dW/dt ~ 0.5 MW
 - P_{loss}/n_e approximate correction for P_{LH} density dependence
- $R_X = 0.5 \rightarrow 0.64$ (22% reduction in B_t at X)
 - ${\rm P}_{\rm loss}/{\rm n}_{\rm e}$ reduction of 38% w/ low lithium
 - $P_{\text{loss}}/n_{\text{e}}$ reduction of 14% w/ high lithium
- Lithium = 50 mg \rightarrow 200 mg
 - $P_{\text{loss}}/n_{\rm e}$ reduction of 47% for high- δ
 - Maximum lithium at outer strike point
 - $P_{\text{loss}}/n_{\rm e}$ reduction of 28% for low- δ
 - Maximum lithium in private flux region

- Higher time resolution equilibrium calculations underway

 LRDFIT and/or EFIT02 at 1 ms resolution
 Complete error analysis
- XGC calculations for high- and low- δ shapes at time of L-H
- XP would benefit from additional ¹/₂ day of run time
 - Repeat low- δ shape with low lithium for reference
 - Develop R_{χ} = 0.42 shape for larger scan
 - Decrease B_t so it matches the value at X-point in the low- δ shape
- Planned publication of comparison XP and XGC0 results

Supported by

XP1042 Mini-Results Review

Wayne Solomon, PPPL

and the NSTX Research Team

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kvoto U Kvushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache **IPP, Jülich IPP, Garching** ASCR, Czech Rep **U** Quebec

Characterization Of Intrinsic Rotation Drive Using Neutral Beam Torque Steps

- Goal: Infer the effective torque profile associated with driving intrinsic rotation.
- Technique
 - Apply torque step and measure evolution of angular momentum

$$\frac{dL(\rho)}{dt} = T_{\text{NBI}}(\rho) + T_{\text{intrinsic}}(\rho) - \frac{L(\rho)}{\tau_{\phi}(\rho)} \text{ with } L(\rho) = \int_{0}^{\rho} nmRV_{\phi} \, dV$$

- At each ρ, solve for two unknowns
 *T*_{intrinsic}(ρ) and τ_φ(ρ) from time history of data → highly overdetermined
- Technique gives quantitatively similar result to measurement obtained by zeroing rotation

2

Major Part of Run Plan Completed

3

Acquired Good Rotation Data in Response to Torque Perturbation

- Rotation takes a long time to establish new steady state
 - Consistent with long momentum confinement time on NSTX
- Unfortunately, rotation is not quite stationary before beam step in most shots
 - But angular momentum may be better when factor in density change

Power and Ip Scans with Torque Perturbations Completed

Still left...

- Missing data:
 - Interaction with n=3 and rotation scan (steps 3 & 7)
- Analysis:
 - TRANSP
 - Post-processing of TRANSP output to extract intrinsic drive
 - Tools have been tested on NSTX cases

6

BES measurements of GAE (XP 1013)

BES status

- 24 channels operational (6/2010) at outer view (0.5 < r/a < 1+)
- 32 channels planned
- Bay F LiTER found not to have LOS to R130, can operate concurrently
- Inner view (~0.1 < r/a < ~0.8) R130 shutters unreliable, manual operation uncertain

BES has supported several XPs

- XP 936 (Rotation effect on turbulence & transport) (Kaye...)
- XP 1013 (GAE e-transport) (Tritz... in WPI presentation)
- XP1037 (High-k parametric dependece) (Ren...)

XP #1067: Edge Zonal Flows and Blob Formation

(S.J. Zweben, R. Maqueda, T. Munsat, Y. Sechrest, S.M. Kaye et al)

frequency spectrum of poloidal 'zonal flow' of turbulence can be complicated

WNSTX

radial distribution of poloidal 'zonal flow' of turbulence is peaked inside separatrix

- Analysis of 2-D flow profiles and attempt at 'scaling' with B/I are in progress
- Fluctuating poloidal flow of turbulence is larger than mean flow of turbulence

XP1041 (0.5+0.5) - Joint NSTX DIII-D poloidal rotation (R.Bell)

- First attempt, Jun 29
 - XP compares measured and neoclassical poloidal velocities
 - Large but unknown amounts of nitrogen & argon present during 1st half day resulted in good measurements but neoclassical calculations are uncertain
- Second attempt, Sept 1
 - The first plasma condition could not be obtained due to trips in the PF3 coil current. Limits had been lowered after the PF4 ISTP.
 - The second plasma condition with higher Bt and lower Ip suffered from short plasmas, so previously obtained MHD quiet periods (occurring at later times) were not obtained.
 - No useable discharges.

XP1028 (0.5 ITER) - Density dependence of L-H threshold (Kaye...)

- Higher P_{LH} seems to increase with increasing n_e
- Non-reproducibility precludes definitive conclusions

FY2010 Results Review / H. Yuh / Sept 30th, 2010

- XP922: Density dependence of L-H threshold
 - Could not set up a reproducible condition; abandoned XP after 1 ½ hrs
- XP936: Effect of rotation on energy confinement
 - Apply steady n=3 braking to establish range of rotational equilibria
 - Previous results doing this indicated increasing ion diffusivity (absolute and relative to neoclassical) as rotation/rotation shear decreased
 - Repeat experiment with BES to assess the change of low-k turbulence with decreasing rotation/rotation shear
 - Reproducible ELM-free condition difficult to obtain, but was able to get some range of powers and applied field amplitudes in ELM-free discharges; BES obtained
 - 0- to 400 1000 kA applied n=3 field
 - 1 to 4 MW

T&T Priority 1 XPs yet to run

XP1039 (0.5) - Comparison of turbulence in Ohmic H-mode (Kubota, Lee)

Fluctuation differences in L/H using correlation reflectometer, measure ion-neutral Renold's number Requires: reflectometer, FIReTIP, GPI Desireable: BES, high-k

XP1040 (0.5+0.5) - Sustained reversed shear ITBs at reduced power (Yuh) Turbulence/transport evolution as smooth function in shear Requires: RF (1-2MW), high-k. Desirable: BES, reflectometer, FIReTIP

XP1036 (1.0) - P_{L-H} for D and He plasmas using RF (Battaglia, Zweben) Requires: RF ramps (2+MW), GPI Desirable: BES, reflectometer, FIReTIP

XP1038 (0.5+0.5) - Investigation of multi-scale turbulence (Smith, Kubota) Parameter scan affecting low-k turbulence Requires BES, reflectometer Desirable: high-k, FIReTIP

FY2010 Results Review / H. Yuh / Sept 30th, 2010

T&T Priority 1 XPs requesting time to finish

XP1037 - Parametric Dependence of High-k Turbulence (Ren)

High-k turbulence dependence on $\nu,\,B_t^{},\,I_p^{}$

Full range of collisionality not yet achieved

Inboard high-k radial position comparison

XP1042 - Intrinsic torque using torque transients (Solomon)

Finish remaining XP with n=3 field interaction with intrinsic drive

XP1041 - Joint NSTX DIII-D poloidal rotation experiment (R. Bell)

Initial half day unsuccessful due to high impurities

Both attempts suffered from machine conditions, Ar/N₂ on 1st attempt and PF3 trips on the 2nd.

Low non-carbon impurity content with sufficiently

Additional T&T XP considerations

XP1070 - Investigation of ETG turbulence isotropy (Smith)

- Measurement of high-k fluctuations in k-space
- NSTX unique capability to measure different k₀/k_r ratios,
- High-k gone after upgrade
- Fully reviewed, XP ready to run

XP(TBD) – Impurity Transport in the NSTX edge (r/a>0.8) (Clayton, Tritz)

- Short neon puffs and the high resolution ME-SXR
- High res ME-SRX, new postdoc

