

Supported by

Boundary Physics Topical Science Group summary

College W&M **Colorado Sch Mines** Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL I I NI I odestar MIT **Nova Photonics** New York U Old Dominion U ORNL PPPL PSI Princeton U SNI Think Tank, Inc. **UC Davis** UC Irvine UCLA UCSD **U** Colorado **U** Maryland **U** Rochester **U** Washington **U** Wisconsin

V. A. Soukhanovskii, TSG Leader

Lawrence Livermore National Laboratory, Livermore, CA

R. Maingi, TSG Deputy

Oak Ridge National Laboratory, Oak Ridge, TN

D. P. Stotler, Theory & Modeling

Princeton Plasma Physics Laboratory, Princeton, NJ

NSTX FY 2010 Results Review

30 September 2010 Princeton, NJ

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI KAIST** POSTECH ASIPP ENEA, Frascati CEA, Cadarache IPP, Jülich IPP, Garching ASCR, Czech Rep U Quebec

Office of

Science

Boundary Physics TSG priorities are defined by

DOE and NSTX Milestones

- FY2010 DOE Joint Research Target: Conduct experiments on major fusion facilities to improve understanding of the heat transport in the tokamak scrape-off layer (SOL) plasma, strengthening the basis for projecting divertor conditions in ITER.
- FY2010 Research Milestone R(10-3): Assess H-mode pedestal characteristics and ELM stability as a function of collisionality and lithium conditioning
- FY2011 DOE Joint Research Target: Conduct experiments on major fusion facilities to improve the understanding of the physics mechanisms responsible for the structure of the pedestal and compare with the predictive models described in the companion theory milestone.
- NSTX-U planning needs and ST development path needs
- ITPA participation, ITER needs

Three Boundary Physics TSG priorities have been defined for FY 2010 run

- Compare divertor heat flux widths to midplane density and temperature widths and edge turbulence characteristics, and determine the scaling of SOL and divertor heat transport (FY2010 Joint Research Milestone)
- Determine the relationship of ELM properties to discharge boundary shape, lithium conditioning, and 3D resonant magnetic perturbations (RMPs), and compare stability of pedestal / ELMs with model calculations (Milestone R10-3)
- Understand and develop a predictive capability for the physics mechanisms responsible for the structure of the Hmode pedestal (FY2011 Joint Research Milestone)

FY 2010 BP TSG Experiments are supporting 3 APS DPP Invited talks and 4 IAEA FEC presentations

• APS Invited Talks:

- J.-W. Ahn, Modification of divertor heat and particle flux profiles with 3-D fields in NSTX
- J. Canik, Edge transport and turbulence reduction, and formation of ultra-wide pedestals with lithium coated PFCs in NSTX
- V. A. Soukhanovskii, Taming the Plasma Material Interface with the ``Snowflake" Divertor in NSTX

IAEA FEC presentations:

- J. Canik, Oral, Optimization of Density and Radiated Power Evolution Control using Magnetic ELM Pace-making in NSTX
- R. Maingi, Oral, Modification of Edge Profiles, Edge Transport, and ELM Stability with Lithium in NSTX
- V. A. Soukhanovskii, Poster, Synergy between the "Snowflake" Divertor Configuration and Lithium Plasma-Facing Component Coatings in NSTX
- J.-W. Ahn, Poster, Divertor heat and particle flux profile modification during 3-D field application in NSTX

Completed and remaining experiments address high-priority issues for STs, NSTX-U and ITER

- Completed experiments
 - XP 1026, A. Loarte, Effects of ELM control with resonant magnetic perturbation on edge power fluxes between and at ELMs
 - XP 1043, R. Maingi, Scaling of heat flux profiles and edge turbulence in NSTX discharges with lithium-coated PFCs for the FY2010 JRT
 - XP 1044, A. Diallo, Increasing the Range of Achievable Pedestal Height
 - XP 1045, V. A. Soukhanovskii, "Snowflake" divertor configuration
 - XP 1046, J.-W. Ahn, Effect of externally applied 3D fields on divertor profiles
 - XP 1048, J.-K. Park, RMP threshold of ELM modification at different q_{95}
 - XP 1051, S. Zweben, Test of LLD Electrodes for SOL Control
 - XP 1069, J. Canik, Watching ELMs disappear with optimum diagnosis of turbulence
- Remaining (scheduled) experiments
 - XP 1030, D. Battaglia, ELM suppression using 3D fields from a single row offmidplane coils on NSTX
 - XP 1050, V. A. Soukhanovskii, Radiative divertor with impurity seeding and lithium pumping
 - XP 1068, R. Goldston, Edge harmonic oscillations
 - XP J. Boedo, SOL transport and turbulence with lithium conditioning

XP 1026 (A. Loarte): Effects of ELM control with RMP on edge power fluxes between and at ELMs

XP1026: Completed for effect of 3-D field on ELMy divertor profiles in plasma regime of ITER's interest

• Divertor plasma collisionality scan:

Gas puffing scan from Bay E GIS successfully varied divertor plasma collisionality in lithium environment

- 3-D field applied to small ELM plasmas in different divertor regimes: Confirmed different effect on inter-ELM divertor profiles, ELM data analysis in progress
- Ip and pedestal collisionality scan:

Two Ip and three ped. collisionality points obtained. Data analysis in progress

XP 1043 (R. Maingi): Scaling of heat flux profiles and edge turbulence in NSTX discharges with lithium-coated PFCs for the FY 2010 JRT

FY2010 JRT on SOL heat transport included analysis of data, development of two-color IR camera, and modeling

- Data analyzed from old XPs: 434, 814, 816, 923 (no lithium)
 - Good I_p , P_{NBI} , flux expansion scans
 - Mix of low and high triangularity discharges
 - Presented at PSI and IAEA (T.K. Gray)
- Two-color IR camera technique developed (A.G. McLean)
 - Presented at RSI conference
- Comprehensive dataset obtained with two-color camera
 - Mostly high triangularity discharges, two lithium rates
- Modeling done with SOLT code (Myra) and XGC-0 with neoclassical transport (Park, Pankin, Chang)
- Oct. 2010 4Q report nearing completion

Complete dataset obtained with 300 mg lithium evaporated between discharges

• Goal 1: measure SOL heat flux footprint at high δ

✓NBI scan: 2-6 MW in 1 MW increments at 1.2, 0.8 MA

 $\checkmark I_p$ scan 0.7 – 1.3 MA at 4 MW and B_t=0.45 T

 \checkmark B_t scan from 0.33-0.55 T at 0.8 MA, 4 MW

✓ Made a great dataset for τ_E scaling analysis

 Goal 2: measure heat flux footprint in C-Mod/DIII-D low κ, near-DN shape

• Got I_p between 0.72-0.8 MA, few NBI levels

• Goal 3: measure heat flux footprint as a function of δ_r^{sep}

✓ High δ: got data at δ_r^{sep} = 0, -2.5, -5, -7.5, -1 cm

• Low δ : got data at δ_r^{sep} = -0.7, -1.3 cm

CAK RIDGE

NSTX

Camera timing and multiple resets complicating analysis

Very nice dataset obtained with 150 mg lithium evaporated between discharges after camera reset problem resolved

• Goal 1: measure SOL heat flux footprint at high δ

 $\checkmark I_p$ scan 0.7 – 1.3 MA at 4 MW and B_t=0.45 T

 \checkmark B_t scan 0.35, 0.45, 0.55 T at 0.8 MA, 4 MW

✓ Some comparison between 3 and 4 MW discharges

 Goal 2: measure heat flux footprint in C-Mod/DIII-D low κ, near-DN shape

 \checkmark Got I_p at 0.75 MA, 2 & 3 MW comparison

• Goal 3: measure heat flux footprint as a function of δ_r^{sep}

✓ High δ : got good data at δ_r^{sep} = 0 and (-20)mm

- Analysis in progress with existing 1-D calculation
 - Implementation of 2-D calculation, and appropriate frame averaging will be implemented during down time

CAK RIDGE

Analysis of existing NSTX data highlighted important empirical dependences

- Divertor heat flux footprint width mapped to midplane (λ_q^{mid}) decreases rapidly with I_p
- λ_q^{mid} independent of P_{SOL} in low radiated power regimes, and contracts very weakly with flux expansion
 - Means high flux expansion, from e.g. snowflake or reduced X-point height, can be used to spread the heat flux in the divertor
- λ_q^{mid} projected at 3 mm for NSTX-Upgrade, with $q_{peak} \sim 24$ MW/m² with flux expansion = 30
 - Have not projected to NSTX-U based on "snowflake" yet

Peak heat flux decreases inversely with flux expansion with roughly constant λ_{a}^{mid} in NSTX

10

8

6

- λ_{a}^{div} increases with flux expansion
- λ_{a}^{mid} stays approximately constant during the scan

Heat flux width λ_q^{mid} largely independent of P_{loss} in attached plasmas in NSTX

- Peak divertor heat flux increases with P_{loss}
- Apparent change in slope near P_{loss}=4 MW in these conditions, as divertor transitions from a radiative/ detached divertor to an attached divertor
- λ_q^{mid} relatively independent of P_{loss} / in high heat flux regime
- All data in this talk averaged over ELMs and before lithium coatings

7

NSTX Results Review 2010 – JRT report (Maingi)

Gray, PSI10

Sept. 29, 2010

Heat flux width λ_q^{mid} largely independent of P_{loss} in attached plasmas in NSTX

Heat flux width decreases strongly with I_p in NSTX

- Combined data from dedicated I_p scans in low δ and high δ discharges
 - I_p dependence also in DIII-D, JET
 - Different P_{NBI} and f_{exp} , but previous slides shows no P_{loss} or f_{exp} effect on λ_q^{mid}
 - q_{95} , ℓ_{II} different

CAK RIDGE

NSTX

Power law fit: λ_q^{mid} ~ 3 +/- 0.5 mm
@ 2 MA

New data with lithium confirms main dependences in the absence of lithium

- Divertor heat flux footprint width contracts with Ip
- $\lambda_q{}^{mid}$ independent of P_{SOL} in low radiated power regimes, and independent of B_t
- λ_q^{mid} decreases by ~ 50% in ELM-free discharges enabled through lithium conditioning (analysis in progress)
- Analysis of $\delta_{r}^{\text{ sep}}$ dependence in progress also

Strong inverse I_p dependence of SOL widths observed in discharges with lithium wall coatings

20

15

10

5

- Outer divertor peak heat flux increases with I_p , because both λ_a^{div} and λ_a^{mid} contract
 - Data from 150 mg lithium
 - Consistent with no lithium results
 - Qualitatively consistent with 300 mg lithium results

Intensity calibration preliminary!

CAK RIDGE

NSTX

1.2 MA (#141245)

1.0 MA (#141256)

0.8 MA (#141255)

SOL width independent of P_{SOL} and B_t

- Outer divertor peak heat flux increases with NBI power, but λ_a^{div} and λ_a^{mid} stay constant
 - Consistent with no lithium results

- Outer divertor peak heat flux, λ_q^{div} and λ_q^{mid} insensitive to B_t
- Intensity calibration preliminary!

NSTX

XP 1044 (A. Diallo): Increasing the Range of Achievable Pedestal Height

Pedestal β_{pol} increases with I_p , and pedestal pressure gradient does not always saturate before ELM crash

Pedestal pressure increases with a variation by a factor ~ 3 before the ELM crash showing no consistent sign of saturation at high plasma current

Strong I_p scaling with the pedestal β_{pol} consistent with ITER98 scaling

Diallo, APS 2010

XP 1045 (V. A. Soukhanovskii): "Snowflake" divertor configuration in NSTX

Steady-state snowflake divertor configurations were developed and characterized in XP 1045

- Magnetic configuration development in FY2010
 - Two-coil SFD configuration with PCS SP control in medium-δ discharges
 - ✓ Much improved control of SPs and SFD, but periods of SFD for 100-200 ms
 - SFD with three coils (w/ reversed PF1B) from a medium- δ discharge
 - Steady-state SFD, however, all shots were ELMy, despite I_p=0.8-1 MA, P_{in}=3-6 MW
 - SFD with three coils (w/ reversed PF1B) from a from a high-δ discharge
 - ✓ Best steady-state SFD, no OSP sweeping through CHI gap
 - Fiducial like-performance, basis for integration with advanced scenarios
 - Developing X-divertor with reversed PF1B and high X-point
- Characterization
 - Confirmed partial detachment of OSP
 - Confirmed heat flux reduction in SFD
 - Could not confirm impurity reduction due to ELMs

Snowflake divertor configuration nearly eliminated steady-state heat load on divertor PFCs

Heat load due to ELMs remained

XP 1046 (J.-W. Ahn): Effect of externally applied 3D fields on divertor profiles

XP1046: Completed parameter scan for effect of 3-D field on ELM-free divertor profiles

- q95 scan: Divertor profiles show finer striations with higher q95, in good agreement with vacuum field line tracing
- n=1 phase scan: Asymmetric divertor footprints confirmed and good agreement with field line tracing
- Pedestal collisionality scan: Data analysis in progress

2

XP 1048 (J.-K. Park): RMP threshold of ELM modification at different q_{95}

- Target plasmas : I_P=0.7~1.3MA, 3MW beam, 300mg LITER, high κ~2.5, high σ~0.8, q₉₅=6~15
- For q₉₅=6~11 : Lower threshold for higher q₉₅, stochastic layer (vacuum Chirikov > 1) width ~ 0.3
- For q₉₅>12 : Higher threshold for higher q₉₅
- Optimal q-window ~ 11 for ELM triggering?

XP (J. Boedo): SOL profiles almost identical, Pedestal shows differences as lithium rate changed

- Data shows NO/LITTLE difference (aside small ELMs) in the SOL
- Only difference seems to be where the pedestal rises near R-Rsep=0
- In 140152 (233 mg li) the pedestal is~0.5-1 cm further in
- In 140150 and 140151 (0 ms lithium) the rise is closer to the nominal R-Rsep=0
- We conclude that the transport changes occur inside, or at, the LCFS.

XP 1051 (Zweben): Effect of divertor electrode biasing on local SOL transport

- Motivation: learn whether the divertor plate particle flux can be controlled by local electrode biasing
- Goal of XP: bias electrodes in Bays E and K and measure effects on local probes and visible emission
- Electrodes deflect plasma at divertor surface by ~ 1 cm

Bay E electrodes

without ±90 V bias

with ±90 V bias

XP 1069, J. Canik, Watching ELMs disappear with optimum diagnosis of turbulence

XP 1069: Watching ELMs disappear with optimum turbulence diagnosis

- Goal: measure edge turbulence as lithium is applied and pedestal profiles modified
- Transition from low-lithium evaporation to high repeated for low-delta shape (~129015)
- Previous trends seen again as Li increased
 - Lower density
 - Same stored energy for less power
 - Reduced recycling, ELMs gone
- Turbulence data obtained with high-k, BES, reflectometers, GPI
 - Analysis underway

Modeling highlight: Lodestar SOLT Modeling for FY 2010 JRT Examines Role of Turbulence in SOL Width

- SOLT: 2-D fluid turbulence at midplane.
- Simulate several H-mode shots to investigate P_{in} & I_p scaling,
- Compare with GPI, probe, IRTV.
- See weak λ_q scaling with P_{in}; I_p scaling is weaker than observed.
- New convective cell mechanism determines width in H-mode simulations.

